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The following property of the geometric mean can be applied to the Galilean coordinates of
the wavefronts from stationary and moving sources. This will make the wavefronts
coincident and the speeds of the wavefronts will be c. However, the clock at the coincident
wavefronts will no longer run at the same rate as the universal clock τ of Galilean
space-time.

The quantity
√

y/x and it’s reciprocal,
√

x/y, map between x, y, and the geometric mean√
xy. This is analogous to (y − x)/2 and it’s additive inverse mapping between x, y, and

the arithmetic mean (x + y)/2.
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The quantity
√

x/y maps from y to the geometric mean of x and y to x.

This property will now be applied to the Galilean coordinates of light pulses that
originated from the origins of two frames of reference moving with a relative speed of v.
The rate of the clock t relative to τ that will make the wavefronts from both origins
coincident with constant speed c will be derived. The relative rates of the clocks in the two
frames of reference at the coincident wavefronts will be derived from these results. The
Lorentz transforms for t and x will then be derived from this relationship.
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In the following diagram, S2 is moving with speed v in the positive x direction with respect
to S1, and their origins are designated by o.

χ′
2 χ2 χ′

2 χ2

S2 <————|——|——————o————|——|————–>
S1 <————|——|————o——————|——|————–>

χ1 χ′
1 χ1 χ′

1

χi and χ′
i are the Galilean locations of the wavefronts from the stationary and moving

sources, respectively.

The wavefronts were produced at the origins of S1 and S2 when the origins were coincident,
and the clocks at both origins read 0.. That is, when x1 = x2 = 0 and t1 = t2 = 0.

It is assumed that the clocks in both frames are synchronized with the universal Galilean
time τ .

Note that the initial conditions obscure the fact that the derived relationship between t1
and t2 is for their relative rates, not their actual values.

For S1 at the right wavefronts:

1) χ1 = cτ
2) χ′

1 = (c + v)τ

From 1 and 2:√
χ1χ′

1 =
√

cτ(c + v)τ , so

√
χ′

1

χ1

=

√
(c + v)τ

cτ
=

√
c + v

c

Let:

3) x1 =
√

χ1χ′
1

4) k1 =

√
c + v

c

5) t1 = k1τ .

From 3, 4, and the previously described property of the geometric mean:

6) x1 = k1χ1 and

7) x1 = χ′
1/k1.

Solving for x1/t1 from the stationary source using 5 and 6, then 1:

x1

t1
=

k1χ1

k1τ
=

χ1

τ
= c

Doing the same for the moving source using 5 and 7, then 2, then 4:

x1

t1
=

χ′
1/k1

k1τ
=

1

k2
1

χ′
1

τ
=

1

k2
1

(c + v) =

(√
c

c + v

)2

(c + v) = c
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Clearly, the speed of light is constant for the stationary source at the origin of S1 and for
the moving source at the origin of S2. Also, the wavefronts from both sources are
coincident at x1, the geometric mean of their Galilean coordinates, χ1 and χ′

1 .

Substituting 6 into 7 and clearing the denominator:

8) t1 = τ
√

1 + v/c

For S2 at the right wavefronts:

9) χ2 = cτ
10) χ′

2 = (c− v)τ

From 9 and 10:√
χ2χ′

2 =
√

cτ(c− v)τ , so

√
χ′

2

χ2

=

√
(c− v)τ

cτ
=

√
c− v

c

Let:

11) x2 =
√

χ2χ′
2

12) k2 =

√
c− v

c

13) t2 = k2τ .

From 11, 12, and the previously described property of the geometric mean:

14) x2 = k2χ2 and

15) x2 = χ′
2/k2.

Solving for x2/t2 from the stationary source using 13 and 14, then 9:

x2

t2
=

k2χ2

k2τ
=

χ2

τ
= c

Doing the same for the moving source using 13 and 15, then 10, then 12:

x2

t2
=

χ′
2/k2

k2τ
=

1

k2
2

χ′
2

τ
=

1

k2
2

(c− v) =

(√
c

c− v

)2

(c− v) = c

Again, the speed of light is constant for the stationary source at the origin of S2 and for the
moving source at the origin of S1. Also, the wavefronts from both sources are coincident at
x2, the geometric mean of their Galilean coordinates, χ2 and χ′

2.

Substituting 12 into 13 and clearing the denominator:

16) t2 = τ
√

1− v/c

Dividing 16 by 8 and cancelling the common term τ :

17a)
t2
t1

=

√
1− v/c

1 + v/c
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t2
t1

=

√
(1− v/c)(1− v/c)

(1− v/c)(1 + v/c)
=

√
(1− v/c)2

(1− v/c)(1 + v/c)
=

1− v/c√
1− v2/c2

17b) t2 = t1
1− v/c√
1− v2/c2

Since x1 = ct1 at the coincident wavefronts, x1/c can be substituted for t1:

t2 =
t1 − t1v/c√
1− v2/c2

=
t1 − (x1/c)(v/c)√

1− v2/c2

18) t2 =
t1 − x1v/c2√

1− v2/c2

The transform for the x coordinate can be derived from 17b by multiplying both sides by c,
rearranging, and making the appropriate substitutions of xi for cti.

ct2 = ct1
1− v/c√
1− v2/c2

=
ct1 − ct1v/c√

1− v2/c2
=

x1 − vt1√
1− v2/c2

19) x2 =
x1 − vt1√
1− v2/c2

Equations 18 and 19 are the Lorentz transforms for t2 and x2 respectively.

The inverse transforms are derived by solving 17a for t1 and x1 in the same manner as for
t2 and x2:

t1
t2

=

√
1 + v/c

1− v/c

t1
t2

=

√
(1 + v/c)(1 + v/c)

(1 + v/c)(1− v/c)
=

√
(1 + v/c)2

(1 + v/c)(1− v/c)
=

1 + v/c√
1− v2/c2

t1 = t2
1 + v/c√
1− v2/c2

t1 =
t2 + t2v/c√
1− v2/c2

=
t2 + (x2/c)(v/c)√

1− v2/c2

20) t1 =
t2 + x2v/c2√

1− v2/c2

ct1 = ct2
1 + v/c√
1− v2/c2

=
ct2 + ct1v/c√

1− v2/c2
=

x2 + vt2√
1− v2/c2

21) x1 =
x2 + vt2√
1− v2/c2

Equations 20 and 21 are the Lorentz transforms for t1 and x1 respectively.
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For S1 and S2 at the left wavefronts:

22) χ1 = −cτ
23) χ′

1 = −(c− v)τ

24) χ2 = −cτ
25) χ′

2 = −(c + v)τ

Notice that in addition to χ < 0, c− v and c + v are transposed between S1 and S2

compared to the right wavefronts. The negative signs will cancel for
√

χiχ′
i and

√
χ′

i/χi, so
xi and ki are real numbers. However, comparing 23 to 2 and 25 to 10, it is clear by
inspection that at the left wavefronts:

t1 = τ
√

1− v/c

t2 = τ
√

1 + v/c, so that

26a)
t2
t1

=

√
1 + v/c

1− v/c

t2
t1

=

√
(1 + v/c)(1 + v/c)

(1 + v/c)(1− v/c)
=

√
(1 + v/c)2

(1 + v/c)(1− v/c)
=

1 + v/c√
1− v2/c2

26b) t2 = t1
1 + v/c√
1− v2/c2

Since x1 = −ct1 at the coincident wavefronts, −x1/c can be substituted for t1:

t2 =
t1 + t1v/c√
1− v2/c2

=
t1 + (−x1/c)(v/c)√

1− v2/c2

27) t2 =
t1 − x1v/c2√

1− v2/c2

The transform for the x coordinate can be derived from 26b by multiplying both sides by
-c, rearranging, and making the appropriate substitutions of xi for −cti.

−ct2 = −ct1
1 + v/c√
1− v2/c2

=
−ct1 + (−ct1)v/c√

1− v2/c2
=

x1 − vt1√
1− v2/c2

28) x2 =
x1 − vt1√
1− v2/c2

Equations are 27 and 28 identical to 18 and 19, as expected. Inverse transforms identical to
20 and 21 can readily be derived at the left wavefronts.
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Equations 17a and 26a can be rewritten as one equation by a change of notation:

tsame

topposite

=

√
1− v/c

1 + v/c

So, if an observer could ride the coincident wavefronts from stationary and moving sources,
he would say that time appears to pass much more slowly in the frame of reference moving
in the same direction as the wavefronts relative to the frame of reference moving in the
opposite direction of the wavefronts.
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