
8320 day 16, Monday Feb. 15.      Monomial singularities : {y^n = x^m} 
We have shown how to desingularize a reduced plane curve, replacing a finite 

number of singular points by smooth points.  Our general analysis gives at least a 
topological local structure theorem for reduced plane curves near every point.  Recall a 
curve {F=0} is called reduced if the polynomial F factors into distinct irreducible factors.  
Notice that the zero locus of a polynomial ∏ fj^rj, where the fj are distinct irreducible 
factors, equals the zero locus of the reduced polynomial ∏fj, so if we are interested only 
in the point set defined by a polynomial we could always assume our polynomial is 
reduced.  In more advanced contexts one does want to distinguish reduced from non 
reduced curves, since they have different deformations.  I.e. the curve defined by y^3 
deforms to a smooth plane cubic of genus one, while that defined by y deforms only to 
other lines of genus zero.  So non reduced curves are important in the study of curves 
moving in families.  But for now we restrict to reduced ones.  In some sense this 
restriction is impossible to maintain though, since we often analyze our curves by looking 
first at the lowest degree term, and this term may not be reduced.  When the lowest 
degree term, called the tangent cone, is reduced, then Hensel’s lemma tells us the local 
analytic structure of our curve.  Today we will learn to analyze also an important class of 
easy singularities whose tangent cones are not reduced, but whose local equations are 
simple enough to analyze fully anyway, “monomial” singularities. 
 

First of all we know there are no isolated points on a reduced (complex) curve, 
and near a smooth, i.e. “non singular”, point the implicit function theorem implies the 
curve has a neighborhood isomorphic to a disc.  In the neighborhood of a singular point 
the curve can be extremely complicated, but it simplifies upon removal of the singularity.  
I.e. a singular point on a reduced curve has a small punctured neighborhood which is a 
finite covering space of a punctured disc, and this implies the punctured neighborhood 
itself is holomorphically isomorphic to a disjoint union of a finite number of punctured 
discs.  Filling in each of these punctured discs by a disc, and doing this at every singular 
point, we obtain the Riemann surface associated to this curve.  Thus every singular point 
has a neighborhood which is homeomorphic to a “one point union” of a finite number of 
discs, i.e. a finite number of discs which are disjoint except for all having the same center 
point. 

This description is simple enough theoretically, but in practice it can be 
challenging to compute how many smooth points are needed to replace a given singular 
point, i.e. how many “branches” there are at the singular point.  This number equals the 
number of connected components of a small punctured neighborhood of the singularity, 
but it is not always obvious how many there are.  One needs to know this in order to 
compute the genus of the Riemann surface.  E.g. if one tries to compute the genus by 
Hurwitz’ formula one needs the total ramification index of the projection from the curve 
to the x axis, and this depends on the number of analytic branches at the point.  If one 
tries to compute the genus of the Riemann surface by comparing it to that of a nearby 
smoothing using the Milnor number, one needs again to know the number of analytic 
branches. I.e. if the Milnor number of the singularity is µ and the number of analytic 
branches is r, one obtains a local topological smoothing by plumbing in a handlebody 
which is a connected 2-manifold of genus (1/2)(µ + 1 - r) with r discs removed, so the 



change in the local topology from the singular curve to the smoothing depends on both µ 
and r. 

 
The simplest singularity, a local analytic model of a node 
A nice class of examples for which one can compute all these numbers is the class 

of monomial singularities, which have local analytic equation of form y^n = x^m, in 
some local analytic coordinates, where n,m ≥ 2.   The simplest case is n = m = 2, called a 
node, or ordinary double point (odp), with analytic equation y^2 = x^2.  Here the local 
analytic equation factors as y^2-x^2 = (y-x)(y+x), these two factors each define a smooth 
local analytic branch of the curve near the singular point and the two branches are 
transverse.  Thus the Riemann surface is obtained by separating these two branches and 
filling in the two holes in the two punctured discs comprising a small punctured 
neighborhood of the node.  In this case the local equation equals the equation of the 
tangent cone and it is reduced, i.e. the two linear factors (y-x), (y+x) define distinct lines. 

Since the two branches are smooth and transverse, the Milnor number here is 1, so 
a local smoothing is obtained by plumbing in a sphere with two discs removed.  Notice 
that two disjoint discs have as boundary two disjoint circles, and that a sphere with two 
discs removed also has that same boundary.  Thus when we remove a small 
neighborhood of the singularity we leave a hole whose boundary is two disjoint circles 
and these are two different ways to plug those holes.  Putting in two disjoint discs yields 
the local Riemann surface, while putting in one sphere with two holes yields a local 
topological smoothing.  One difference is the Riemann surface separates the distinct 
analytic branches, while the smoothing connects them up.  Also the Riemann surface 
construction yields a complex analytic space while the smoothing construction gives only 
a topological model of a nearby complex plane curve.  Every singularity with two local 
analytic branches is smoothed by plumbing in some connected 2 manifold with two 
disjoint circles as boundary, but knowing what this manifold is depends on knowing the 
Milnor number. 

 
Recognizing a node from its global polynomial equation 
We also want to be able to recognize a node given by a more complicated 

equation, since we usually have a global polynomial equation for our curve and not a 
local analytic equation.  This too is easy by “Hensel’s lemma” as follows.  We can 
change coordinates linearly so that our singularity is at (0,0) in affine coordinates.  Then 
the equation has form f(n) + f(n+1) + f(n+2) +..... where f(j) is a homogeneous 
polynomial of degree j in (x,y).  Then (0,0) is a node if and only if the lowest order term 
f(n) appearing here has degree 2, and moreover f(2) factors into two distinct linear 
factors.  I.e. if the lowest order homogenous term f(2) factors into two distinct linear 
factors, then the whole equation factors locally near (0,0) into two convergent power 
series whose linear terms are the two linear factors of the quadratic term. 

This is easy to see at least formally.  I.e. it is easy to write down two power series 
inductively, whose product equals the given equation, but it is a little more work to show 
those power series converge on some neighborhood of (0,0).  We just do an example that 
illustrates the general case.  Take the curve to be xy + x^3 + y^3 = 0.  We want to factor 
it as xy + x^3 + y^3 = (x+g2+g3+g4+...)(y+h2+h3+h4+...), where gj and hj are 
homogeneous polynomials in (x,y) of degree j.  This requires xh2 + yg2 = x^3 + y^3, 



which is readily solved by h2 = x^2, g2 = y^2.  Next we need xh3 + yg3 + g2h2 = 0, and 
since we have already found g2,h2, this says xh3 + yg3 + y^2x^2 = 0, or xh3 + yg3 =  
-x ^2y^2.  This too is easily solved by h3 = -xy ^2, g3 = 0, or several other choices.  Next 
we want xh4 + yg4 + g2h3 + g3h2 = 0, or xh4 + yg4 = - g2h3 - g3h2 =  xy^4, again 
easily solved.  At each stage we only need to solve an equation of form x hj + y gj = 
f(j+1), where f(j+1) is homogeneous of degree j+1 in x,y.  Since every term of f(j+1) is 
divisible by either x or y, thus can always be done.  The puzzle that there are many 
different solutions even though the power series ring is a “unique factorization domain” 
is explained when we recall that “uniqueness” of factorization is only true up to 
multiplication by units.   I.e. there are infinitely many units in the ring of power series, 
since every power series with non zero constant term is invertible, so indeed all these 
different pairs of power series solutions for the factors must be associates.  

As to convergence of these power series in the usual complex topology, note that 
in this particular example at least, every coefficient of every monomial in each factor 
above is 1, so these monomials are all bounded by 1 in the polydisc |x|<1, |y| < 1, hence 
the series converges there.  (Recall that a power series converges in any polydisc where 
all the monomials are uniformly bounded.) 

 
Ordinary n fold points are also determined by the lowest order local term 
Apparently there is also a version of Hensel’s lemma for singularities of higher 

multiplicity, as long as the lowest order term factors into distinct linear factors, i.e. when 
that homogeneous term is reduced, but I have not found an explicit reference.  Thus if the 
curve has equation f = f(d) + f(d+1) +....., where the homogeneous polynomial f(d) 
factors into d distinct linear factors, then it seems f itself factors locally into d convergent 
power series each defining a smooth branch of the curve at (0,0) with tangent line defined 
by one of the linear factors of f(d). 

For example if the lowest order term of f is a monomial singularity of form f = 
y^n-x^n, which factors as ∏(y - µj.x) where the µj are the distinct nth roots of 1, then 
also the equation itself factors locally into n power series each defining a smooth local 
branch with tangent line defined by one of the linear factors (y - µj.x).  

For this curve, and for all ordinary n fold points, the Milnor number µ = 
dimk[[x,y]]/(fx,fy) = dimk[[x,y]]/(x^(n-1,y^(n-1)) = (n-1)^2.  Since there are n local 
analytic branches, the Riemann surface is formed just by separating those n branches and 
filling in the n holes by n smooth points, one on each branch.  On the other hand, if the 
curve is smoothed locally, the handlebody that is plumbed in is a compact connected 
surface of genus = (1/2)(µ+1-n) from which n discs have been removed.  The genus of 
this handlebody, before removing the n discs, is thus (1/2)(n-1)(n-2).  If the curve is 
globally irreducible, this surgery increases the genus (from that of the Riemann surface to 
that of the smoothing) by (1/2)(µ+n-1) = (1/2)(n)(n-1). 

For example, an ordinary triple point with local analytic equation y^3-x^3 = 0, 
may be thought of as 3 odp’s coming together, hence lowers the genus of the Riemann 
surface by three, compared with a nearby local smoothing.   An ordinary quadruple point 
with local analytic equation y^4-x^4 = 0 similarly lowers the genus by 6.  In general an 
ordinary n fold point may be thought of as a coalescence of (1/2)(n)(n-1) ordinary double 
points, and this is another way to see that it causes the genus of the Riemann surface of 



an irreducible curve to go down by (1/2)(n)(n-1) compared to the genus of a nearby local 
smoothing. 

 
If not reduced, the lowest order term does not fully determine the branches  

  From what I have read of related similar Hensel type results, I would guess that 
even if the lowest degree term factors as f(d) = ∏ Lj^rj, where the Lj are distinct linear 
factors, but they may occur to higher multiplicities rj, then the full equation f also factors 
locally into at least as many power series factors as there are distinct linear factors Lj.  
For example, if the lowest term of f is x^3y2, then f should factor locally into at least two 
distinct power series, one with lowest term x^3 and the other with lowest term y^2, but 
these two power series may or may not factor further.  Hence this curve has at least two 
distinct analytic branches at (0,0), but there may be more.  

[This can be proved geometrically by invoking some more powerful theorems 
from analytic geometry.  I.e. by our general local theory, every local analytic branch at 
this singularity can be parametrized by an analytic map from a disc. The image of such a 
parametrization, even if singular, has a unique tangent line, so there must be at least as 
many local parametrizations as there are lines in the tangent cone.  If we know also that 
the image of every local parametrization has an analytic equation as a power series, a 
corollary of a “proper mapping” theorem, we would know these power series factors of 
our original equation must exist.] 

In fact an equation whose lowest term is y^n, may be locally irreducible, or may 
factor into any number of local analytic factors between 1 and n.  For example (y^4-x^8) 
= (y-x^2)(y+x^2)(y-ix^2)(y+ix^2) has 4 smooth branches; y^4 –y^2x^3- y^2x^4 +x^7 = 
(y^2-x^3)(y-x^2)(y+x^2) has 3 branches, two of which are smooth; y^4 –yx^5 –y^3x^2 
+x^6 = (y^3-x^4)(y-x^2) has 2 branches, one of which is smooth; y^4 –y^2x^3 – y^2x^5 
= (y^2-x^3)(y^2-x^5) has two singular branches; (y^4-x^5) is locally irreducible, but all 
have the same lowest order term y^4.  Thus a lowest order term of form y^n gives almost 
no information about the number or smoothness of the branches if n ≥ 2, except that the 
number of branches is ≤ n. 
 
For monomial singularities, the two lowest terms do determine the local branches 

If we have an analytic local equation in the monomial form y^n – x^m however, 
then we can tell exactly how many local analytic branches there are using both terms, and 
can write down explicit local parametrizations for each branch.  Of course this is because 
we can actually factor such a simple expression into irreducible factors in the ring of 
polynomials, and the factors are also irreducible in the ring of power series.  We explore 
the different cases next. 

 
Monomial singularities with only one local branch 

If f(x,y) = y^n – x^m where n,m are relatively prime, then there is only one local 
analytic branch, and the curve is parametrized by the map t--->(t^n,t^m).  E.g.  the curve 
y^3-x^8 = 0 is parametrized by t--->(t^3,t^8) = (x,y).  Since t = (t^3)^3/t^8 = x^3/y, there 
is an inverse to this parametrization on a punctured neighborhood of the singularity 
defined by (x,y)--->x^3/y.  To check the composition in the other direction, note that 
(x,y)--->t = x^3/y---> (x^9/y^3, x^24/y^8), which if we use the equation y^3=x^8, equals  
(x^9/x^8, y^9/y^8) = (x,y). 



In general, if an+bm = 1, the inverse to t--->(t^n,t^m) is defined by (x,y)--->t = 
(x^a y^b).  I.e. then t--->(x,y) = (t^n,t^m)---> t^(an) t^ (bm) = t^(an+bm) = t.  In the other 
direction, (x,y)--->x^a y^b --->(x^(an) y^(bn), x^(am) y^(bm)), and using y^n = x^m 
gives (x^(an) x^(bm), y^(an) y^(bm)) = (x^(an+bm), y^(an+bm)) = (x,y). 

Since a punctured neighborhood of the singularity is isomorphic to a punctured 
disc, there is only one local analytic branch in this case.  A small punctured 
neoghborhood thus is isomorphic to a punctured disc, and the Riemann surface is formed 
by capping off this punctured disc with a single smooth disc.  The Milnor number is µ = 
(n-1)(m-1), so a local smoothing of the curve is obtained by instead plumbing into the 
hole left by the singular point, a compact surface of genus µ/2 from which a single disc 
has been removed. 
 
A monomial singularity {y^n - x^m = 0} has k = gcd(n,m) local analytic branches 

If the equation is y^n - x^m, where n = ak ≤ m = bk with 1 ≤ a ≤ b, and a,b 
relatively prime, then there are exactly k = gcd(n,m) local analytic branches.  To see this 
just factor as in the “ordinary” case where the exponents are equal, i.e. y^n-x^m = 
(y^a)^k – (x^b)^k = ∏(y^a - µj.x^b), as µj runs over all the kth roots of 1.  Each factor 
{y^a - µj.x^b) = 0} is of the type just shown in the previous paragraph to define a locally 
irreducible curve, so this factorization into k distinct factors shows the original curve has 
k distinct local analytic branches, all “tangent to” the line y = 0.  These branches are all 
smooth if and only if a = 1, i.e. if and only if n divides m.  Otherwise all branches are 
singular.   

The Milnor number is easily calculated as µ = dim k[[x,y]]/(x^(n-1), y^(m-1)) = 
(n-1)(m-1), and the number of branches is k = gcd(n,m).  Thus the Riemann surface is 
formed by separating the k branches and capping off the resulting k holes by k discs.  A 
local smoothing is formed by instead plumbing in a handlebody made from a connected 
compact surface of genus (1/2)(µ+1-r) = (1/2)([n-1][m-1]+1-k), by removing k discs.  
Thus if the curve is globally irreducible, this singularity reduces the genus of the 
Riemann surface, compared to a nearby smoothing, by (1/2)([n-1][m-1]+k-1). 

Tomorrow we discuss a class of global equations, the cyclic covers of P^1, for 
which all singularities are monomial, and we can compute the local equations at all 
singularities, and hence the genus from the global poloynomial equation. 

 
The quadratic transform of P^2 

Just for fun, we look at a global example of a Riemann surface for a plane quartic 
with three nodes.  This is an example of the famous “quadratic transform” of the plane.  
Consider the following “rational map” P^2--->P^2, i.e. the map defined by the rational 
functions [x : y : z]--->[1/x : 1/y : 1/z] = [yz : xz : xy]. The first version shows that the 
map is its own inverse where defined.  Notice this map, even in its second representation, 
is undefined where any two coordinates are zero.  Moreover on the line where any one 
coordinate is zero, the map sends the rest of that line to one point.  The lines x = 0, y = 0, 
z = 0 form what is called the “coordinate triangle” in P^2, and this map “blows down” the 
sides of this triangle, while simultaneously “blowing up” the vertices.  I.e. the 3 sides are 
mapped to the three vertices, and the three vertices are mapped to the three sides.   

Points that approach a given vertex along different directions have images that 
approach different points on the image line for that vertex.  This makes the operation 



good for resolving singularities, since transverse branches of a singularity occurring at a 
vertex are separated into different image points by the map.  In fact although not obvious 
to me, repeated blowings up eventually separate even tangent branches.  I.e. I guess 
repeated blowings up correspond to taking higher derivatives, and at some level any two 
distinct branches have distinct derivatives or “jets”.  We are interested also in the 
opposite result, namely a curve meeting a coordinate line transversely at two different 
points will have those two points mapped to the same image point, creating a node on the 
image curve.  A smooth curve meeting one these lines tangentially at a point p, will have 
the smooth branch of the curve at that point p transformed into a singular branch.  

Now look at the smooth conic x^2 + y^2 + z^2 = 0, chosen so as not to pass 
through any vertex of the coordinate triangle.  Its image under the quadratic transform, 
which equals its pullback by the self inverse map, is the quartic {y^2 z^2 + x^2 z^2 + x^2 
y^2 = 0}.  This quartic is irreducible since it is the image of an irreducible conic, and one 
can check the quartic has nodes at each of the three coordinate vertices.  Since a smooth 
quartic has genus three, we expect the Riemann surface of this irreducible 3 nodal quartic 
to have genus zero.  Indeed that is borne out by the explicit parametrization of it by the 
smooth conic above.   

Inversely, the quadratic transform, which is defined except at the nodes of the 
quartic, maps the quartic birationally to the smooth conic, thus desingularizing it.  In 
general a quadratic transform improves singularities occurring at the coordinate vertices 
and creates new singularities from points meeting the sides of the coordinate triangle.  If 
those intersections with the sides are transverse however, these new singularities are 
ordinary ones.  By changing coordinates and repeating this process, it can be shown that 
an arbitrary reduced plane curve can be transformed in a finite number of steps into one 
with only ordinary singularities.  In particular at that point the genus can be calculated.  I 
learned this beautiful classical theory from the book of Walker, Algebraic plane curves, 
and one can also learn it in modern language from the free book, Algebraic curves, by 
Fulton.  The modern approach in Fulton has some advantages especially in the later 
discussion of the Riemann Roch theorem, but the chapter on resolving plane singularities 
by quadratic transforms in Walker is very nice and explicit.  It is also reproduced in my 
class notes from 1991 that I handed out. 


