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1 Lagrangian and Hamiltonian formulation.

1.1 Configuration space.

It is assumed that the momentary, well, eh, configuration of a dynamical system
can be described by a finite number n of real parameters, the generalized
coordinates:

q = {Q1>Q27-~-7Qn} (1)

For a featureless point particle in 3-dimensional Euclidean space on which a ref-
erence frame has been defined, there are 3 such generalized coordinates, namely
the 3 cartesian coordinates of the point in space that is occupied by the point
particle at the instant in time we’re considering:

G =T,q2=Y,q3 =2 (2)

We do not need to have cartesian coordinates, of course. For example, spherical
coordinates do just as well:

q=rq=0q9g=0¢ (3)

For Nfeatureless point particles, we can in an evident way describe the system
by 3N such coordinates. But of course, 'mixed’ coordinates are also possible,
such as the relative positions of certain particles with respect to others etc...

For a rigid body, 6 coordinates are needed, for example, the 3 cartesian
coordinates of the center of gravity and 3 Euler angles. For ensembles of rigid
bodies with constraints, called mechanisms, the choice of generalized coordinates
has to take into account the constraints.

So there is a (part of ) R™ that is called ” configuration space” and corresponds
to the possible values of the n-tuple {qi,...,¢,} that makes sense. In fact, we
should be more general and allow for a differentiable manifold, and not just a
chunk of R™ to be the configuration space, but we won’t go into that here.

1.2 Hamilton’s Principle

The basic idea is that the time evolution of our dynamical system is determined
by a path, followed by a ”point in configuration space”, that is parameterized in



time. This simply comes down to say that the dynamical behavior of our system
is described by letting the generalized coordinates be functions of time t. There
are supposed to be laws of nature that determine these paths, so not just all lines
in configuration space correspond to time evolutions of our dynamical system.
In fact, it is taken to be a fundamental principle of nature that there is only
one single path that describes the dynamics of the system when the system has
configuration {qi(l)} at moment ¢ = t(), and configuration {ql@)} at moment
t = t?). This fundamental principle is called Hamilton’s Principle. It says
two things. First, it says that there exists a function, the Lagrangian, of the
generalized coordinates, their time derivatives, and time:

L(Q17~--7Qn7(ily~-76]n7t) (4)

Second, it says that for a true path in configuration space, as it is actually
followed by the dynamical system, which is in configuration ¢*) at time t(*)
and in configuration ¢(® at time t(?) satisfies:
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Here, § stands for a variation amongst paths. Let us look closer at what is
precisely stated: For each potential path ¢(t), that satisfies the two boundary
conditions: ¢(!) at time t(") and ¢(® at time ¢, the integral has a value. If the
potential paths change a little, then this value changes a little too. But for the
true path the integral has a certain value, and slightly changed potential paths
from the true path give us the same value in first order of the change. Meaning
the true path has an extremum (usually a minimum) of the integral. We say
that the integral is stationary for this path. In fact, the condition imposed by
Hamilton’s Principle puts a severe constraint on what are possible true paths,
and in most cases only one path survives. That is then the true path followed
by the dynamics of the system. In fact, Hamilton’s Principle can be reduced to
a set of differential equations which the true path has to satisfy:

d (0L oL
dt (aqz) g 0 ©)

These are called Euler-Lagrange’s equations and are mathematically equiv-
alent to Hamilton’s principle. They are second-order differential equations for
i(t).

A remark is maybe due on derivatives. When we have a function, like a
Lagrangian, and we take a partial derivative to, say, ¢;, it might be a bit dis-
turbing, because there is also g; somewhere. The partial derivative has to be
understood as with respect to a slot in the functional prescription: simply write
L(a,b,c), derive with respect to b, and after that, place back ¢; and ¢;. A to-
tal derivative with respect to time however, means that we consider ¢ to be a
function of time, that ¢ is the derivative of this function of time and that we
have to apply the chain rule. Both kinds of derivatives appear in the way the
Euler-Lagrange equations have been written down.




1.3 Hamilton’s formulation

Lagrangian dynamics, the prescription of true paths in configuration space
through Hamilton’s Principle, or equivalently, solving the Euler-Lagrange equa-
tions in configuration space, gives a priori a full description of the dynamics,
once we know the Lagrangian. There is, however, something which is unsatis-
factory, and that is this configuration space. Knowing the point in configuration
space which is occupied at a certain moment in time does not completely fix
the time evolution, so this point in configuration space does not contain all the
information of the dynamical state of the system. In fact, that’s obvious, be-
cause the Euler-Lagrange equations are second-order equations, so in order to
fix a solution one needs a value of ¢; and of their derivatives.

Hamilton introduces 'phase space’, in order to remedy this. The idea is that
a point in phase space contains all the dynamical information of the system,
and that from there on, only one possible evolution in time is possible. So we
could simply define phase space as the direct sum of configuration space, and
a copy of it, representing the derivatives, but Hamilton does something more
subtle. Starting from the Lagrangian, he defines the following variables, called

conjugate momenta:
9L(q,4q,t
Di = EE ) (7)
q
He proposes to invert these equations, so that we can write the derivatives of ¢;
as functions of only the ¢ and the p (and ¢):

Qi = Ti(Qypv t) (8)

He then introduces the function: H = ¢;p; — L(q, ¢,t) but written as a function
of ¢ and p:

H(q,p, t) = ri(qap7 t)pz _L<Q7T(q7pv t)7t) (9)
This function H(q,p,t) is called the Hamiltonian. The space spanned by the
variables ¢; and p; (so a 2n dimensional space) is called phase space. We want
to stress here that equation 7 is only needed to define a variable transformation
between the Lagrangian formalism and the phase space formalism. Once this has
been done (once the Hamiltonian has been found using equation 9), we should
forget about this relationship, and consider p and ¢ as independent variables.
Again, a path in phase space determines the dynamics of the system, where by
"path” we understand a curve parameterized in time, {g;(¢),p;(t)}. Of course
not all such curves in phase space correspond to a dynamics of the system. In
fact, paths are much more restricted in phase space than in configuration space,
because, by construction, we want only one single true path to go through each
of the points in phase space. Indeed, we wanted a point in phase space to
fix completely the dynamical evolution of the system, and that comes down to
saying that only one true path can go through that point. It can be shown that
the equivalent dynamics is given by the set of first order differential equations
which the true paths have to satisfy:

(10)



dt N 86]1'

(11)

They are called the canonical equations of Hamilton. In fact, the dynamics
in phase space (the dynamically allowed paths in (p,q) space) can also be de-
rived from a variational principle. There is indeed such a principle, called the
modified Hamilton Principle, and it takes on the following form:

He)

b </t_t<1> (Pi(t)@i(t) — H (qu(t), s @ (t), p1(t), ...n (1), 1)) dt) 0 (12

We have to consider all different paths (¢(t), p(¢)) in phase space, that satisfy
the requirement that ¢(t(") = ¢ and ¢(t?) = ¢(®. Note that there is no
requirement on the boundary values of p. p and ¢ have to be considered as
independent variables here that can independently take on values as a function
of time. Each of these paths satisfying these requirements gives rise to a certain
value of the integral. The true path followed by the dynamical system has then
the property that the value of the integral is the same (to first order) for this
path, and other, potential paths near to it. Note that in the integral, we use of
course the Hamiltonian as a function of p and ¢, but we explicitly use ¢ in the
front term. This must not be replaced by the function r(q, p). Working out the
consequences of the modified Hamilton Principle, we find back the canonical
equations of Hamilton, proving the equivalence of both formulations.

A final remark: if a generalized coordinate ¢; doesn’t explicitly occur in the
Hamiltonian, then p; is a constant of motion (meaning, a constant, independent
of time for a true dynamical motion). ¢; then becomes a linear function of time.
Such a coordinate g; is called a cyclic coordinate.

2 Canonical Transformations

2.1 What are Canonical Transformations 7

In configuration space, any change of generalized coordinates:

Q'L' = Q’i (qja t) (13)

is a possibility (as long as the transformation is smooth and regular). We
substitute, in the Lagrangian, the old ¢; by the new @; (using the inverse
transformation) and the old ¢; by the new Q; using the chain rule in the inverse
transformation. We then obtain a new function L’ which serves as the new
Lagrangian and which gives us the same dynamical behavior of the system
as a function of the new variables ;. Such a transformation of generalized
coordinates is called a point transformation. But in Hamilton’s formulation,
we can go further. We can have transformations of phase space:

Qi = Qi(p,qt) (14)
P; = Pi(p,q,t) (15)



However, the point transformations of configuration space could take on any
form ; there are only certain kinds of transformations allowed in phase space, in
order to be able to have a new Hamiltonian formulation in the new variables.
The allowed transformations in phase space are called Canonical Transfor-
mations. The requirement is that there exists a new Hamiltonian, K(Q, P, t),
such that this Hamiltonian, and the associated canonical equations, give rise to
allowed dynamical paths in the phase space (@, P), that are the transformed
paths of the allowed dynamical paths in the phase space (g, p). From the varia-
tional principles explained earlier, it can be shown that the most general trans-
formation from the old to a new Hamiltonian takes on the form:

dF
K =\H+ 7 (16)
A canonical transformation hence will give rise to the above transformation of
the Hamiltonian. There is actually another requirement, namely that of scale.
Indeed, we can always introduce a global scale factor in the transformation. So
it is always possible to re-scale a transformation so that A = 1. In fact, it is
just a matter of definition: if we drop this requirement, we talk of extended
canonical transformations, but when we apply the requirement, we talk about
canonical transformations.
A way to generate canonical transformations is by using a generating func-
tion Fy. Just consider a general function:

FQ(QvP7t) (17)
We can then build a transformation from the following equations:
0F,
;= 18
p 94, (18)
0F,
i = 1
% = Gp (19)
If we now introduce: OF
K=H+=2 20
+ (20)

we obtain again a Hamiltonian system, with Hamiltonian function K, in the vari-
ables (Q;, P;). This dynamics is equivalent, through the transformation, with
the original Hamiltonian dynamics, so the proposed transformations are canoni-
cal transformations. There are similar transformations possible from other gen-
erating functions. For example, we can play a similar game with a generating
function Fi(q, @,1).

2.2 Poisson Brackets
If v and v are two functions defined on phase space, we can define a new function

on phase space, called the Poisson bracket of the two functions:

0], = % ov B ov Ou
0 Yap = 0q; Op;  Oq; Op;

(21)



It turns out that for the variables (g, p) themselves, the Poisson bracket takes
on particularly simple values:

95, arl,, = 0=1IpjsPely, (22)
95,6, = Ok =—1IPral,, (23)

These relationships are called the fundamental Poisson brackets. It turns
out that Poisson brackets are invariant under Canonical transformations. This
means that a necessary and sufficient condition for a transformation to be a
Canonical transformation, is that the transformation functions satisfy the fun-
damental Poisson brackets.

The invariance of Poisson brackets under canonical transformations allows
us to write all time evolution as follows:

du ou

A special case are the canonical equations of Hamilton:

G = |a, H] (25)
Di [pi, H] (26)

3 Hamilton-Jacobi theory

3.1 The Hamilton-Jacobi equation.

We saw that a point in phase space represents the full dynamical information
a system has, and only one single dynamical time evolution is possible with as
initial condition, a particular point in phase space. The complete solution to
the dynamical problem of a system is hence given by the functions:

a = q(q).p).t) (27)
pi = pila),pdt) (28)

Here, (¢°,p") stands for the initial point in phase space at time ¢t = 0. This
can be any point. Now the idea is the following: if we can somehow find a
canonical transformation, that inverts the above equations, meaning, the new
variables are (g%, p°), then the dynamical problem is simple: in these variables,
nothing moves ! But of course we have to make sure that this comes down to
a canonical transformation, and then we have to find it. If we find it, we have
completely solved the dynamical problem. The idea is now that in order to
have nothing move in the new variables, a way that is certain, is to make the
new Hamiltonian K vanish. So we're looking for a canonical transformation,
generated by a function Fy, such that K = H + 0F»/0t = 0. Taking F5(q, P, t),

then we have:
Oy

pi = 04

(29)



and our requirement is:

=0 (30)

OF: OF: OF:
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This equation is know as the Hamilton-Jacobi equation. It is a first order
partial differential equation in F5. In the literature, F5 is actually written .S,
and is called Hamilton’s Principal Function. From the theory of partial
differential equations, a complete solution to this equation consists of:

S:S(Q17"'7Qn;a17"'7an+1;t) (31)

But one constant has to be an additive constant (only derivatives of S appear
in the Hamilton-Jacobi equation). After dropping that constant, we can call
the n remaining constants simply P;, and we have:

S =8(q1, -, Gn; Prs oo Prst) (32)

The canonical transformation satisfying our request then takes on the form:

- _ 0S(q, Pt)
- _ 0S8(q, Pt)
Q = Zp (34)

Inverting the transformation yields the original total solution to the dynamical
problem:

pj (t) = pj(Q7 P, t) (36)

where the new coordinates, (@, P) are to be considered constants that are func-
tions of (g%, p°).
The crucial point in all this is of course to find a complete solution to the
Hamilton-Jacobi equation.
It is interesting to note the following:
as oS . 08

— = —G¢+ = =pi¢; —H=1L
& = oqlit ar —Pid (37)

SO:

S:/Lﬁ (38)

3.2 Hamilton’s Characteristic Function

In the case the original Hamiltonian does not contain time explicitly, the Hamilton-
Jacobi equation takes on the form:

oS oS oS
H (QI7~--7Qn§ ) =

aim’...aiq’nl E —0 (39)



As the first term doesn’t contain time, we can propose the following solution:
S(qi, Piyt) = Wiqi, Pi) — Pit (40)

(here, the P; are supposed to be integration constants). This then leads to the

following equation:
ow
Hlqg,— | =P 41

(q 3%) ! (1)

This is a partial differential equation, not containing time anymore, in the func-
tion W, called Hamilton’s Characteristic Function. Note that one of the
constants of integration, namely P; is equal to the constant value of the old
hamiltonian. If the hamiltonian doesn’t contain time, we know that it is a con-
stant of motion. In many cases, this comes down to the constant energy of the
system. We can of course stop here, but we can also look at another canonical
transformation than the one generated by S; we can look at what canonical
transformation W itself generates:

ow

pi = 34 (42)
oW

Qi = P, (43)

Because the generating function, W, doesn’t contain explicitly time, the values
of the old and the new Hamiltonian are the same. So K = P;. Note that all the
new coordinates, @Q);, are cyclic in this system. The solution to the canonical
equations are that all P; are constant, and all Q; for i # 1 are constant. We
also have:

Q1 =t+t (44)

Because the equations for Q2. , as a function of the g;, equations 43, do not
involve time explicitly, they are n-1 equations for n variables g;, and constitute
implicit orbit equations.

We could have written S differently:

S(qZ,P“t) :W(qz,R)—K(Pl,PQ,,Pn)t (45)

with K just any function of P;. In this case, the new Hamiltonian would have
been K = K(Py, Py, ..., P,). This allows for a more symmetrical treatment: all
coordinates @); are still cyclic, and the canonical equations specify that:

Qi = vit + B (46)
with: oK
;= 47
vi=op (47)
Interesting to note is that:
aw oW

2 T s g 4

g = og U= il (48)



which leads to:
W = / pidg; (49)

Let us consider a simple example, which is needed in quantum mechanics

(in the WKB method):

2
H(p,a) = 3~ + V() (50)

We hence have, from the conservation of energy:
p=+v2m(E —-V(z)) (51)
This allows us to use:

Wz, E) = / pidgs = / L am(E =V (@))da’ (52)

In this extremely simple example, we found a rather explicit form of W very
easily. Usually things don’t go so fast!



