Chapter 2
Portfolio Theory: Origins, Markowitz
and CAPM Based Selection

Phoebus J. Dhrymes

The valuation of risky assets was initially based on bond valuation theory. Although
the valuation of a bond may fluctuate due to variation in market interest rates, the
coupon was fixed and subject mainly to the risk of default, which was episodic
rather than continuous; prominent in the nature of the instrument were certain legal
safeguards. When applied to stocks (risky assets) frequently the role of the coupon
rate was played by the dividend, which though not fixed was deemed to be steady
and subject only to infrequent changes. This framework, however, is evidently
inappropriate in the case of stocks where the rate of return (principally earnings)
is inherently variable and is not subject to legally binding specification.

The origin of modern finance in this context (portfolio selection) must be traced
to the work of Markowitz (1952, 1956, 1959). Its basic framework is based on the
work of von Neumann and Morgenstern (1944) (VNM) who pioneered the view that
choice under uncertainty may be based on expected utility. The concept of utility is
at least as old as the nineteenth century and the view that consumer choice (of the
basket of goods and services consumed) was a compromise between the consumer’s
desires and the resources available to him (income). Thus, preceding expected utility
constructs, the view prevailed that consumers obtained the most preferred bundle of
goods and services they could attain with their incomes. But how could we import
these concepts into the valuation of risky assets and their subsequent inclusion
in a basket we call portfolio; after all consumers choose various goods because
they satisfy some desire or group of desires. But a consumer (investor) need not
have a preference or desire to own a given security per se. The importance of
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Markowitz’ contribution is that he isolated two aspects of relevance, return and
risk, established a method of ranking them (a utility function), thus recognizing
the inherent riskiness (randomness) of returns, and invoked VNM in the process.
Having done so, it becomes clear that in this formulation the problem is conceptually
broadly similar to the problem of consumer choice, although by no means identical.
He correctly saw that it is not possible simultaneously to increase returns and at
the same time minimize the risk entailed, because of arbitrage. Indeed, many of the
later developments of the subject follow from these insights although not explicitly
detailed in Markowitz (1959).

2.1 Constrained Optimization

Ignoring the utility or expected utility aspects, the (portfolio) selection problem was
defined as: maximize expected returns subject to a variance and scale constraint.’
Setting up the Lagrangian

A=YEr+arg+Aik—y2Zy)+ A0 -y —a), 2.1

where E is the expectation operator, r is an n-element column vector containing the
rates of return on the risky assets, rg is the risk free rate, y = (y1,%2,...,¥a) is
the portfolio composition, the individual elements y; denoting the proportion of the
portfolio invested in the ith risky asset and « is the portion invested in the risk free
asset; evidently, y’ Xy is the variance of the portfolio, or its risk; it is assumed that
at least for the duration of the choice period,

Er=p Cov(r) =X >0, Erg=ry var(ry) =0. 2.2)

If we solve for the first order conditions we find?

1 1

y = ZAIE_I(H_WO)’ a=1-— Zkle’E_l(M—eVO)» (23)
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ao= Ve e e= (11,1, 2.4)
2y'xy

"How does one explain that only the mean and variance of returns and not other moments play
a role? One can justify this by an implicit assumption that the probability distribution of returns
belongs to a family of distributions described by only two parameters, or that the expected utility
function is of such a form that it depends only on the mean and variance of the relevant distribution.
2Tt should be noted that Markowitz did not actually solve for y; rather his version focused only on
risky assets and imposed non-negativity constraints on the elements of y. Thus what he derived
from the first order conditions were rules for inclusion in and/or exclusion from (of securities) in
an optimal portfolio.
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Although the solution was easy to obtain the interpretation of the Lagrange
multiplier, A; is clouded by the fact that it is not invariant to scale; thus if we
were to double o and the elements of y, the expression for the Lagrange multiplier
would be halved without any change in other aspects of the procedure; thus any
interpretation given to it in comparisons would be ambiguous and questionable.
To that end we alter the statement of the constraint, thus redefining risk, to3

k= @'y =0,

without changing its substance. In turn this will yield the solution
k —1 k /5—1
y=. % (u—erg), a=1—_¢€%X (u—ery), (2.5)
Al Al

_ Y (n — ero)
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Al =1y, e=(1,1,1,...1). (2.6)

Examining the numerator of A,, i.e. the Lagrange multiplier in the alternative
formulation of the risk constraint we find

Y (i —ero) = (y' 1 + arg) — ro, (2.7)

i.e. it is the excess expected return of the portfolio while the denominator is o),
i.e. the portfolio’s risk! Thus the Lagrange multiplier attached to the risk constraint,
in the Markowitz formulation, gives us the ‘terms of trade’ between reward and risk
at the optimum. Noting further that

aA
= A1,
ok
3From the point of view of computation, entering the constraint as k> = y’Xy simplifies

operations, but makes the Lagrange multiplier harder to interpret in terms of common usage in
finance; if, however, we enter the constraint as k = (3’ £y)'/2, we complicate the computations
somewhat, we do not change the nature of the solution, but we can interpret the Lagrange multiplier
in terms of common usage comfortably. We should also bear in mind that if risk is defined in terms
of the standard deviation rather than the variance, a certain intuitive appeal is lost. For example,
it is often said that security returns are subject to two risks, market risk and idiosyncratic risk. If
we also say, as we typically do, that market risk is independent of idiosyncratic risk, then we have
the following situation: denote the market risk by the variance of a certain random variable, say
o2, and the idiosyncratic risk by the variance crfﬁo then the risk of the security return is the sum
02 + 020 On the other hand, if we define risk in terms of the standard deviation, then the

two risks are not additive, i.e. the risk of the security is not o, + 0jgio but \/ 02 + Ufﬁo, which

is smaller, when we use as usual the positive square root. This problem occurs whenever there is
aggregation of independent risks.
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we may interpret A; as the optimal marginal reward for risk or more correctly
the marginal reward for risk at the optimum. All this is, of course, ex ante and
assumes that the investor or the portfolio manager knows with certainty the mean
and variance of the stochastic processes that determine ex post the realized returns.

2.2 Portfolio Selection and CAPM

Another aspect that needs to be considered is whether the index based on the
interpretation of the Lagrange multiplier discussed in connection with the solution
given to the portfolio selection model inv Markowitz (1959) is relevant in the CAPM
context and whether these optimality procedures shed any light on the issue of
composition rules.

For the latter issue, a more recent development along these lines is given in Elton
et al. (2007), where the objective is stated as the maximization of the Sharpe ratio,
which is the ratio of (expected) excess returns to (expected) standard deviation of a
portfolio, using CAPM as the source of the covariance structure of the securities
involved. It does that by means of nonlinear programming; from the first order
conditions it derives rules of inclusion in (and exclusion from) an optimal portfolio.
While similar in objective, this is not equivalent to the Markowitz approach.
Moreover, it is questionable that maximizing the Sharpe ratio is an appropriate way
for constructing portfolios. In particular, a portfolio consisting of a single near risk
free asset with near zero (but positive) risk and a very small return might well
dominate, in terms of the Sharpe ratio, any portfolio consisting of risky assets
in the traditional sense. A ratio can be large if the numerator is large relative
to the denominator, or if the denominator is exceedingly small relative to a
small positive numerator. Consider (10/2) and (.5/0.1) or (.1/0.01). The point
is that given the level of risk it is generally agreed that the higher the Sharpe
ratio the better, however, to put it mildly, it is not generally accepted that the
higher the Sharpe ratio the better, irrespective of risk. Evidently this would depend
on the investor’s or portfolio manager’s tradeoff between risk and reward.

In Markowitz the rates of return are stochastic processes with fixed means and
covariance matrix; thus what is being solved is an essentially static problem. It could
be made somewhat dynamic by allowing these parameters to change over time,
perhaps discontinuously.* This, however, imposes a considerable computational bur-
den, viz. the re-computation of n means and n(n + 1)/2 variances and covariances.
On the other hand, if we adopt the framework of CAPM suggested, by Sharpe
(1964), Lintner (1965b), Mossin (1966), Treynor (1962)° and others, as originally

41 say ‘somewhat dynamic’ because we still operate within what used to be called a ‘certainty
equivalent’ environment, in that the underlying randomness is not fully embraced as in option
price theory.

The intellectual history of the evolution of CAPM is detailed in the excellent and comprehensive
paper by French (2003), which details inter alia the important but largely unacknowledged role
payed by the unpublished paper Treynor (1962). We cite Lintner (1965a) in the cite both Lintner
paper of 1965 in his capital market development.



2 Portfolio Theory: Origins, Markowitz and CAPM Based Selection 43

formulated, rates of returns are assumed to behave as
ri—rwn = Bi(rm—r0) +uz, i=1,2,....,n. t=1,2,...T, (2.8)

where ry;, o, Iy are, respectively, the rates of return on the ith risky asset, the
riskless asset and the market rate of return, f; is a fixed parameter, at least in
the context of the planning period; u; is, for each i, a sequence of independent
identically distributed random variables with mean zero and variance w;;; moreover
u,; and uy; are mutually independent for every pair (z,7') and (i, j). Notice that if we
rewrite the CAPM equation as

ri = (1 — ,Bi)rtO + ,Birmt + uy, (2.9)

this version of CAPM seems to assert that individual returns are, on the average,
linear combinations (more accurately weighted averages for positive betas) of the
risk free and market rates with fixed weights. A more popular recent version is

ri = ¢i + Birm + i, (2.10)

where now ¢; is an unconstrained parameter. If we bear in mind that the risk
free rate is relatively constant it might appear that the two versions are equivalent.
However, when considering applications this is decidedly not so. Some of the
differences are

1. If we attempt to apply a (Markowitz) optimization procedure using the first
version, the component ¢ of the portfolio devoted to risk free assets cannot be
determined and has to be provided a priori. This is due to the fact that in this
version

Erp =10+ )//,B(I'Lmt - rtO)a

which is the expected value of the returns on any portfolio (y, «), does not
contain « ; since the risk free rate has zero variance and zero covariances with
the risky assets, « is not contained in the variance (variability) of the portfolio
either. Thus, it cannot possibly be determined by the optimization procedure.
With the alternative version, however, we can.

2. Bearing in mind that expected returns and risks are not known and must be
estimated prior to portfolio selection, if we use the first version to determine
an asset’s beta we obtain

T T
,3'2 1=1(ri = 110) (Fme — 10) ~ 5 N 1 thz'
l u
r =1

T 5 v Uy =1 — Bt — 0), w i
Z,=1(”mr - VrO)

if we use the alternative (second) formulation of CAPM with an unrestricted
constant term we would obtain
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2 Zthl(Vri - ;i)(rmr - ;m) ~ 5 ~ 1 a ~2
,Bi = T B , Wi =Ty — ,Bi(rmt —ro), Oi= ZM,LG
Zt=1(rmt_rm)2 T =1
If the risk free rate is appreciably smaller than the sample means of individual
asset and market rates of return, the estimates of §; could deviate appreciably
from those obtained using the first version.

3. Equation (2.11) implies that every individual asset’s rate of return is a linear
combination of the risk free and market rates but the coefficients of the linear
combination need not be positive. In particular it implies that an asset with
negative beta does not respond to market rates as its beta might indicate, but the
response is modulated by the term (1 — B)ry, which in this case is positive. In
addition, it may have implications for well-diversified portfolios that have not yet
been explored.

Thus, we shall conduct our analysis on the basis of the alternative (second) version
of CAPM given in Eq. (2.12).

The main difference between our formulation and that in Markowitz is that here
rme 1S @ random variable with mean 4, and variance O'r%n whose parameters may
vary with t, perhaps discontinuously; it is, however, independent of u,;, for every
pair (z,¢") and i; moreover, if we use it as the basis for a Markowitz type procedure
the resulting portfolios would depend on these parameters. Thus they could form
the basis for explicit dynamic adjustment as their parameters vary in response to
different phases in economic activity.

Within each ¢, the analysis is conditional on 7,,,. The relation may be written, for
a planning horizon T,

r[i:Ci+ﬁirm[+M[is i:1727”'7n t:1727”'5T (2'11)

where ry;, 1, are, respectively, the observations on the risk free and market rates at
time ¢, ¢;, B; are parameters to be estimated and u, the random variables (error
terms), often referred to as idiosyncratic risk, with mean zero and variance wj;.
Because the analysis is done conditionally on r,,, and because by assumption the
u; are independently distributed, and all equations contain the same (right hand,
explanatory) variables, we can estimate the unknown parameters one equation at a
time without loss of efficiency, by means of least squares. Now, can we formulate
a Markowitz like approach in choosing portfolios on the basis of CAPM? Before we
do so it is necessary to address an issue frequently mentioned in the literature, viz.
that by diversification we may eliminate ‘idiosyncratic risk’. What does that mean?
It could simply mean that in a diversified portfolio idiosyncratic risk emanating
from any one risky asset or a small class thereof is negligible relative to market risk,
although it need not be zero. On the other hand, taken literally it means that

Tim )" yieq = 0, (2.12)
i=1
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i.e. this entity converges to zero with probability 1, and thus idiosyncratic risk need
not be taken into account, meaning that for the purpose of portfolio selection we can
use a version of CAPM which does not contain an idiosyncratic risk component.
Formally, what is required of such entity in order to converge (to its zero mean)
with probability one? For example, in the special case where y; ~ 1/n, a sufficient
condition for Eq. (2.14) to hold is given by Kolmogorov as®

n
. Wij;
lim E 5 ) <00,
n—>00 4 1 1
i=

which would be satisfied if the w; are bounded. For another selection of the
components of y it may not be; for example, if y; ~ n"/n,n > 0 it will not be
satisfied even if the variances are bounded. Since this assertion imposes a restriction
on the vector, y, of an undetermined nature, we prefer to explicitly take into account
idiosyncratic risk in formulating the problem of optimal portfolio selection.

Another aspect that needs to be considered is whether the index based on the
interpretation of the Lagrange multiplier discussed in connection with the solution
given to the portfolio selection model in Markowitz (1959) is relevant in the CAPM
context and whether these optimality procedures shed any light on the issue of
composition rules.

We proceed basically as before except now the variability constraint utilizes the
standard deviation. For clarity, we redefine portfolio returns and the covariance
matrix of the securities involved given the CAPM specification; thus

ry=Yc+y Brm+ar+yu, T=Q+02pp, (2.13)
and the solution is obtained by optimizing the Lagrangian
A=Y+ Y Brm+arg+rk—@EN? + (0 —ye—a), (2.14)

From the first order conditions we easily obtain

k
(@ +00B8) v =, (c+ Bptan = ero) (2.15)
1
a=1—ye, A=rg, e=(,1,...1) (2.16)
E _
A= 0 2.17)

[y'(Q + o2 pp)11'/>

6See Dhrymes (2013, pp. 202-203).
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The last equation is easily obtained by premultiplying the first equation above by y’
and using the definition of Er, implied by Eq. (2.15) above. If we now substitute for
A1 we obtain an equation that involves only « and y, i.e.

-1
(Ve + v Biwe + arn)y =k (2 + 02,88 (¢ + Bitm — ern). (2.18)

But, if we use Eq. (2.16) we can eliminate « so that Eq. (2.18) may be rewritten as

VY (C + Bitm: — er) — yrio = K (R + 62,86') " (¢ + Bitm — ern),  (2.19)

which can now be solved for y.
A number of features of this procedure need to be pointed out:

1. No high dimensional matrix needs to be inverted, due to a result (Corollary 2.5),7
which enables us to write

2

o-mt

2 /—1_ -1 _ —1 ro—1 _ .
(@+onfp) - =07 —CQTPFRT, L= Lo g

since €2 is diagonal we easily compute

ro-la _ ‘ :312 —lppro—1 _ ,3,-,3;
g0 ﬂ—;(w) ot = "]

i il

i.e., it is a matrix whose typical element is B;8;/w?.

2. The number of parameters that we need to estimate prior to optimization is 3n+2,
viz. the elements of the vectors ¢, B and the variances wj; all of these can be
obtained from the output of n simple regressions. The other two parameters are
simply the mean and variance of the market rate.

3. The procedure yields a set of equations which are quadratic in y; the solution is
a function of k%, i1, 02, and can be adjusted relatively easily when updating of
the estimates of j1,,, 02, is deemed appropriate.

4. Tt is interesting that the optimal (solution vector) composition vector, y, is a
function of (depends on) the risk parameter k%, not k, i.e. risk is represented
by the variance, not the standard deviation.

We thus see that in the context of CAPM the implementation of optimal
portfolio selection becomes much simpler and computationally more manageable
and, consequently, so is the task of evaluation ex post.

7See Dhrymes (2013, pp. 46-47).
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2.3 Conclusion

In this paper we reconsidered the problem of portfolio selection as formulated
by Markowitz (1959) and proposed an extension based on CAPM. This extension
highlights certain aspects that represent a considerable simplification; it illuminates
issues regarding the estimation of securities betas, the role played by idiosyncratic
risk and leads to the formulation of a set of quadratic equations that define the
optimal composition of efficient portfolios (the elements of the vector y), as a
function of the selected level of risk and estimates of (expected) market rate and
its risk (variance). The only remaining problem is to find an algorithm that solves
sets of quadratic equations. This should not be very difficult. Given that, it offers
a systematic way in which portfolio managers might insert into the process their
evolving views of market rates and their associated risk, when updating is deemed
necessary.

An interesting by-product is the potential provided by this framework in eval-
uating (managed) portfolio performance. In a now classic paper Sharpe (1966)
evaluates mutual fund performance by considering realized rates of return for a
number of mutual funds over a number of years and computes the standard deviation
of such returns. The evaluation relies on the ratio of average returns to their
standard deviation. Strictly speaking, these two measures do not estimate ‘constant
parameters’ since the composition of the fund is likely to have changed appreciably
over the period; thus their ratio is not a ranking of the fund itself. It is, however, a
ranking of the fund cum manager.

If we use the framework presented in the paper which is based on CAPM we
could, in principle, during each period compute from published data the portfolio
or fund risk as y’(2 + o2BB’)y. Thus, the evaluator will have for each period,
both realized returns and risk. This would make a more satisfactory basis for
evaluation.
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