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Abstract Efficient and accurate structure exploiting numerical methods for solving
the periodic Riccati differential equation (PRDE) are addressed. Such methods are
essential, for example, to design periodic feedback controllers for periodic control
systems. Three recently proposed methods for solving the PRDE are presented and
evaluated on challenging periodic linear artificial systems with known solutions and
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applied to the stabilization of periodic motions of mechanical systems. The first two
methods are of the type multiple shooting and relv on computing the stable invariant
subspace of an associated Hamiltonian system. The stable subspace is determined
using either algorithms for computing an ordered periodic real Schur form of a cyclic
matrix sequence, or a recently proposed method which implicitly constructs a stable
deflating subspace from an associated lifted pencil. The third method reformulates
the PRDE as a convex optimization problem where the stabilizing solution is approx-
imated by its truncated Fourier series. As known, this reformulation leads to a semi-
definite programming problem with linear matrix inequality constraints admitting an
effective numerical realization. The numerical evaluation of the PRDE methods, with
focus on the number of states (r) and the length of the period (7') of the periodic
systems considered, includes both quantitative and qualitative results.

Keywords Periodic systems - Periodic Riccati differential equations - Orbital
stabilization - Periodic real Schur form - Periodic eigenvalue reordering -
Hamiltonian systems - Linear matrix inequalities - Numerical methods

Mathematics Subject Classification (2000) 15A21 - 15A39 - 34K13 - 49N05 -
65F15 - 65P10 - 70M20 - 70Q05 - 90C22

1 Introduction

In this paper, we evaluate numerical methods for solving for X () € R"*" in the
periodic Riccati differential equation (PRDE) [1, 10, 41]:

~X()=AOTX(0)+ XO)AW) — X(OBORO ' BOT X))+ Q(1),  (1.1)

where the state matrix A(t) € R"*" and the input matrix B(t) € R"*™ are locally
integrable on [0, T'] and T -periodic, i.e., A(t) = A(t + T) and B(t) = B(t + T) for
all £ > 0. The continuous T -periodic weighting matrices Q(¢) € R**", and R(t) €
R™>™ are symmetric, and positive semidefinite and positive definite, respectively.
The PRDE arises, for example, in solving the periodic linear quadratic regulator
(periodic LQR) problem, where the quadratic performance index

/OO [x(t)T O()x (1) + u(t)TR(t)u(t)] dr, (1.2)
0

is to be minimized, with respect to u(¢), on solutions of the periodic linear control
system:

() = A(Ox () + BOu(), x(0) = xo. (1.3)

In the last few years, the interest for developing robust solvers for the PRDE
has increased, mainly because the existing, so-called, periodic generator methods
[28, 33, 50] for solving the PRDE are unreliable for systems with a large number of
states n or with a large period T. However, recently new methods have been pro-
posed. In this paper, we examine three of these methods: two variants of the periodic
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Numerical evaluation of PRDE solvers 303

multi-shot method [47, 49] (invariant subspace approaches) and the SDP method [18]
(a convex optimization approach). PRDEs with an indefinite quadratic term is not
considered in this paper (see [2]).

The periodic multi-shot methods are based on discretization techniques, which
turn a continuous-time problem into an equivalent discrete-time problem. The meth-
ods are a further development of the periodic generator method (also known as the
one-shot method). To solve the PRDE a linear periodic Hamiltonian system must be
integrated over one period. The importance of using svmplectic integration methods
for solving the Hamiltonian system of ODEs has recently been emphasized in, e.g.,
[29-31, 46, 47]. This is also demonstrated by the numerical results in this paper.
The solution of the PRDE is computed using two different approaches. The first ap-
proach relies on computing the stable invariant subspace of the monodromy matrix
associated with the Hamiltonian system using the periodic real Schur form [11, 27]
and the reordering of eigenvalues in the periodic real Schur form [23]. The second
approach implicitly constructs a stable deflating subspace from an associated lifted
pencil [49].

In addition to the multi-shot methods we explore a convex optimization approach,
which is based on the approximation of the stabilizing solution of the PRDE by its
truncated Fourier series. By doing this approximation and reformulating the search
of a stabilizing solution of the PRDE as a maximization problem, the task is turned
into a semidefinite programming (SDP) problem with linear matrix inequality (LMI)
constraints [18].

The purpose of this contribution is two-fold: (i) to review the three PRDE methods
briefly mentioned above and discuss algorithms for their effective implementation in
terms of fast and robust MATLAB software; (ii) present a numerical evaluation per-
formed on challenging PRDE problems which includes quantitative as well qualita-
tive results and comparisons. The methods are first compared on a set of artificially
constructed periodic linear control systems with known solutions, and then on two
problems for which solutions are unknown and of interest for the task of orbital sta-
bilization of forced oscillations in controlled mechanical systems.

The paper is organized as follows. In Sect. 2, we present some preliminaries in-
cluding system characteristics of periodic systems and introduce the LQR problem.
Sections 3 and 4 deal with invariant subspace approaches and the convex optimiza-
tion approach, respectively, for solving the PRDE (1.1). In Sect. 5, the multi-shot and
the SDP methods are tested and evaluated. We end with an evaluation summary and
some conclusions in Sect. 6.

2 Preliminaries

We start by introducing some concepts and important results known for the periodic
linear system (1.3) in Sect. 2.1. For a detailed discussion of periodic systems see, e.g.,
[1, 7, 10]. In Sect. 2.2, we briefly describe the underlying control problem and state
the conditions for existence of a stabilizing solution.
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2.1 Some system characteristics of periodic linear systems

First, consider a square time-varying matrix M (t)' and let ®y;(z, 1) be the transition
matrix associated with M (¢) satisfying

L ow (1) = MODyt.10), Pulio. o) =,

where I denotes the identity matrix of the same size as M. For a T-periodic M (¢),
the transition matrix evaluated over one period is known as the monodromy matrix
W (o) = @y (to + T, tp). The eigenvalues of Wy, (#y) are called the characteristic
multipliers of M (t). These eigenvalues are independent of 7, thus ¥y, (fy) has the
same spectrum for all 9. M (¢) is said to be a stable periodic matrix if all characteristic
multipliers A; are inside the unit circle (open unit disc) centered in the origin, i.e.,
[Li] <1, foralli.

Next, we recall the definitions of reachability/stabilizability and observability/de-
tectability for a periodic linear control system (1.3) (see for example [1, 10]). A char-
acteristic multiplier A of A(¢) is said to be unreachable if Wa(to)Tx = Ax, x # 0,
imply that B(1)T @ (t9, 1)T x = 0 almost everywhere for ¢ € [fo, fg + T']. Otherwise
the characteristic multiplier is said to be reachable. The system (1.3) is stabilizable
if there exists a periodic matrix K (¢) such that A(¢z) — B(¢) K (¢) is stable, or, equiva-
lently, if all characteristic multipliers A of A(¢) with |[A| > 1 are reachable.

Now, consider a periodic linear control system with an output: y(¢) = C(#)x(¢),
where C(¢t) € RP*" is a T-periodic matrix. A characteristic multiplier A of A(¢)
is said to be unobservable if W4 (tg)x = Ax, x # 0, imply that C(#)P (¢, 10)x =0
almost everywhere for ¢ € [tg, fo + T]. Otherwise the characteristic multiplier is said
to be observable. The system (1.3) is detectable if there exists a periodic matrix L(t)
such that A(t) — L(¢)C () is stable, or, equivalently, if all characteristic multipliers A
of A(t) with |A| > 1 are observable.

2.2 Problem description

The optimal control problem we consider is to compute a stabilizing controller for the
periodic linear control system (1.3), where the optimal periodic controller is obtained
by solving the LQR problem [3, 39, 43, 50]. The LQR problem belongs to the class of
linear optimal control problems which also includes, e.g., linear quadratic Gaussian
(LQG), Hx and H; optimal control problems. The aim of the methods for solving
these optimal control problems is to find a control law for a linear system such that a
quadratic performance index is minimized.

It is well known that the optimal control input u*(¢) for the periodic linear control
system (1.3) with the associated quadratic performance index (1.2) has the form

u*(t) = —K(t)x(t), where K(t)=R()"'B()T X(1), 2.1)

'We remark that M is used as an arbitrary matrix with different meanings (time-varying, positive
(semi)definite, M; in a cyclic matrix sequence). The actual use of M is stated within its context.
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and the periodic matrix X (¢) € R"*" is the so-called stabilizing solution for (1.1).
This means that X (f) is symmetric and positive semidefinite, and the closed-loop
matrix A(t) — B(t) K (¢) is stable. The next statement from [9] describes the sufficient
conditions for the existence of a T -periodic stabilizing solution for (1.1).

Theorem 2.1 The PRDE (1.1) admits a unique positive semidefinite periodic stabi-
lizing solution X (t) = X ()T > 0 if the pair (A(t), B(t)) is stabilizable and the pair
(A1), Q(1)'/?) is detectable, where (Q(1)'/*)T Q(1)'/? = Q(1).

3 Invariant subspace approaches

In this section, we are considering the periodic multi-shot methods proposed in
[47, 49]. They are based on the periodic generator method [28, 33, 50], which obtains
a periodic solution of (1.1) by computing the stable invariant subspace of the transi-
tion matrix of the Hamiltonian system associated with (1.2) and (1.3). The multi-shot
methods use techniques explicitly designed for computing the invariant subspace of
periodic systems: the ordered periodic real Schur form (Sect. 3.3.1) or the ordered
generalized real Schur form of a lifted pencil (Sect. 3.3.2). The associated Hamil-
tonian differential system is solved using a symplectic (structure preserving) integra-
tion method, see Sect. 3.1. The two multi-shot methods are presented in Sects. 3.4
and 3.5. We end with a brief overview of the MATLAB implementations of the meth-
ods in Sect. 3.6.

3.1 Computing the transition matrix

When solving the PRDE (1.1) associated with the periodic linear control system (1.3)
using an invariant subspace approach, a linear Hamiltonian system with symplectic
flow must be solved. For details on Hamiltonian systems, symplectic matrices, and
symplectic integration methods see, e.g., [12, 25, 36].

The periodic Hamiltonian matrix H(t) € R?"*2" associated with (1.1) is

-1 T
H(t)=|:A(t) —B()R(1)™ B(1) }

—Q() —A@n)”

where the time-varying H (t) satisfies H (1) J +JH(t) =0forallt,and J = —JT =
—J~ ! is the skew-symmetric matrix

0 I
=[5 8]
with [, the n x n identity matrix. From the initial value problem

0
Ede(t,lO):H(t)@H(t,tO)a Dy (10, t0) = Ion, 3.1

the transition matrix @ (¢, ty) associated with H (¢) is computed. The system (3.1)
is a linear Hamiltonian system where the transition matrix @y (¢, fg) for all ¢ > 1 is
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symplectic. Note, @y (t, tp) is symplectic because it satisfies @y (z, )T Tyt to) =
J and therefore its 2n eigenvalues (characteristic multipliers) appear in recipro-
cal pairs (A;, 1/A;), for i = 1,...,n. We recall from Sect. 2.1, that the transition
matrix evaluated over one period is known as the monodromy matrix ¥g (f9) =
Do+ T,1p).

The (time) flow map of a Hamiltonian system (3.1) is symplectic, e.g., see [36]. To
preserve the symplectic characteristic of the Hamiltonian system (3.1) an integrator
that preserves the symplectic flow of the problem must be used. For the computational
experiments in Sect. 5, we use the symplectic and symmetric Gauss Runge-Kutta
method [25, 26]. It is a one-step implicit Runge-Kutta method with fixed time steps
where the intervening nonlinear system is solved using fixed-point iteration.

3.2 Periodic generator versus multi-shot methods

Traditionally, the PRDE (1.1) is solved using a periodic generator method (e.g., see
[28, 33, 50]), which is a single shooting type method. This approach involves solving
the linear Hamiltonian system (3.1) over one period 7', where the knowledge of the
stable invariant subspace of @y (¢, f9) allows to compute the stabilizing solution of
the PRDE (1.1). The periodic generator method has some major disadvantages and is
potentially numerically unreliable. Depending on which approach is used (see [49]),
one or two ODEs with unstable dynamics must be solved. For systems with large
periods this will result in a significant accumulation of truncation errors. Moreover,
if a non-symplectic solver is used there will also be a drift in the solution of the
linear Hamiltonian system. Special symplectic solvers for periodic (stiff) problems
are considered in [17, 28].

The alternative periodic multi-shot methods [47, 49] reduce the impact of the
numerical difficulties caused by the periodic generator method. The main idea is
to turn the continuous-time problem into an equivalent discrete-time problem. This
is achieved by considering the following product form of the monodromy matrix
Wy (19) € RZV21 with 19 = 0:

Vg(0)=Pu(T,0)=Px(T, T —A)---Pg(2A, A)PH (A, 0), 3.2)

where A = T /N for a suitable number of time instances’> N € N. In the following,
denote @, = @y (kA, (k—1)A),k=1,..., N. Notably, @1,..., Py is an N-cyclic
matrix sequence of 2n x 2n real matrices. The linear Hamiltonian system (3.1) can
now be integrated for each transition matrix @y, and methods for periodic eigenvalue
problems can be used to compute the stable invariant subspace. Notably, since each
@ is symplectic the eigenvalues of ¥y (0) appears in reciprocal pairs and conse-
quently it has n eigenvalues inside and n eigenvalues outside the unit circle.

In consequence, the multi-shot methods have several advantages compared to the
periodic generator method:

2In practice, the constant N can be chosen such that the time grid points 7 (k — 1) /N at which the discrete-
time values of the solution X (¢) are computed, coincide with the sampling times used to implement the
resulting continuous-time stabilizing periodic controller.
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(i) The linear Hamiltonian system, which always has unstable dynamics, is solved
over short time intervals of the period 7. This avoids excessive accumulation of
errors and makes the method more reliable for problems with large periods.

(ii)) Only one ODE (in a multi-shot fashion) must be solved, in contrast to the peri-
odic generator method where (possibly) two ODE:s are solved in sequence.

(iii) The system’s periodicity is exploited, by explicitly using methods designed for
periodic systems.

(iv) The numerical integration of the Hamiltonian system can easily be parallelized.
This is of great value since this part can be very computationally intensive.

(v) Since the integration of the Hamiltonian system is done over short time intervals,
the importance of using a symplectic solver is not critical.

3.3 Computing stable invariant subspaces of products of cyclic matrix sequences

When solving the PRDE with a multi-shot method we are interested in the stable pe-
riodic invariant subspace of a matrix product M = Mp --- My M) associated with
a P-cyclic matrix sequence My, ..., Mp, where each M is a square matrix and
M+ p = My for any positive integer k. While computing the eigenvalues and in-
variant subspaces, it is not advisable to explicitly evaluate the matrix product, which
is both costly and can lead to significant loss of accuracy and even to under- and
overflows [11]. Here, we review two methods for computing a stable subspace that
are used in the multi-shot methods discussed in Sects. 3.4 and 3.5. The first is based
on an ordered periodic Schur decomposition and the second is based on computing a
stable deflating subspace of a lifted pencil.

3.3.1 Ordered periodic real Schur form

Given a cyclic sequence of n. X n. real matrices My, k =1, ..., P, the periodic real
Schur form (PRSF) is defined as follows [11, 27]: there exists a P-cyclic orthogonal
matrix sequence Zj € R"<*" guch that

Zl My Zp =Sk, k=1,...,P, (3.3)

with Zy4 p = Z; and where one of the Sx matrices, say S,, is upper quasi-triangular
and the remaining are upper triangular. The quasi-triangular matrix S, has 1 x 1 and
2 x 2 blocks on the main diagonal and can appear anywhere in the sequence (typically
as S7 or Sp). The product of the conforming diagonal blocks of the matrix sequence
Sk gives the real (1 x 1 blocks) and complex conjugated pairs (2 x 2 blocks) of
eigenvalues, respectively, of the matrix product Mp --- My M.

When computing the PRSF it is not possible to simultaneously specify the order of
the eigenvalues of the matrix product Sp - -- S1. In the periodic multi-shot methods,
we need to be able to separate the stable and unstable eigenvalues of the P-cyclic
matrix sequence (3.2) of n. X n. matrices with P = N, n. = 2n, and My = &y in
(3.3). For this purpose we can use a direct method for reordering the eigenvalues of a
periodic matrix sequence in PRSF that results in an ordered PRSF [23]: there exists
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a periodic orthogonal matrix sequence Qx € R?**?" such that

® 7k
Tl 1 T12 :|

QZ+1Ska=TkE|: =1,...,N,
(k)
0 T,

where Tl(f) € R™" and Tz(é{) € R™". The matrix product Tl(lN ... Tl(ll) has n eigen-
values inside the unit circle, and T2(2N ). Tz(zl) has n eigenvalues outside the unit cir-
cle.® Then the first n columns of the sequence Qy span the stable right periodic
invariant subspace, and the last n columns span the unstable left periodic invariant

subspace.
3.3.2 Stable deflating subspace of a lifted pencil

An alternative approach to compute the stable invariant subspace is the fast algorithm
proposed in [49]. This method belongs to the family of “fast” methods [6, 14] for
discrete-time algebraic Riccati equations, and is an extension of the swapping and
collapsing approach [5, 6] of quotient-products. Provided a P-cyclic matrix sequence
My, ..., Mp, where My € R"*" for k =1,..., P, the fast algorithm constructs a
stable invariant subspace of the matrix product Mp - - - M, M from a stable deflating
subspace of an associated lifted pencil.
Define the associated lifted pencil to the cyclic matrix pairs (M, I,,.):

M —I, 0 . 0
0 M, —1I,, . :
S—=| . . . . . (3.4
0 Mp_; _InC
—zl, 0 0 Mp

The finite eigenvalues of this pencil are the eigenvalues of the matrix product
Mp --- MyM,. By using an orthogonal transformation matrix U") the rows of the

—In,

matrix [ M ] are compressed to [1;1], where R; is an n; X n. nonsingular matrix.
The first two block-rows of S — zT now become

My R -UY 0 - 0
M, o —ud o ... 0o

where the n. x n matrix U,.(jl) is the (i, j)-th block of the matrix UD. Applying the

. . )
row compression recursively to (3.4) on [ 1322 ], fork=2,..., P — 1, transforms
k+1

3In finite precision, computed eigenvalues may appear on or close to the boundary of the unit circle.
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the matrix pencil S — zT to the reduced pencil

[ [‘711 R _Ul(é) 0 0 ]
M 0 R -UY
S—:T = :
N _y
Mp_l—ZUl(z_) 0 0 Rp_1
| Mp—zUy " |0 o

where the regular matrix pencil Mp — zU2(2P -b

S—zT.
The stable deflating subspace is computed from an ordered generalized real Schur
decomposition [32]

contains all finite eigenvalues of

(3.5)

S —zTi1 Sip—zTn
0 Ezz—zfzz ’

" (Mp — Uy )2 = [

where Q and Z are orthogonal matrices, and the upper quasi-triangular matrix pen-
cil 3‘] 1— Zﬁl € R9*9 has only finite eigenvalues inside the unit circle. The first ¢
columns of Z span the stable (right) deflating subspace, which also span the stable
invariant subspace of the product Mp - - - M. Consequently, the last n; — g columns
of Q span the unstable (left) deflating subspace.

3.4 Multi-shot method based on an ordered periodic Schur form

The multi-shot method using the ordered PRSF is presented in Algorithm 1. To en-
hance the numerical accuracy, the Hamiltonian system in Step 1 is preferably solved
with a symplectic solver like the symplectic Gauss Runge-Kutta [25, 26].

Algorithm 1

1. Compute the transition matrices @1, ..., @y by solving the linear Hamiltonian
system (3.1) for each interval [(k — 1) A, kA], where k=1, ..., N.

2. Compute the ordered PRSF associated with the matrix product ¥y (0) = @y - - -
DOrydy:fork=1,...,N,

Tl(f) Tl(éc)
Of 2\ P Zk Qi =Tic = [ (k)] : (3.6)
T
with Qi+n = Ok, Zk+N = Zi, where the matrix products Tl(lN ). T1<11 ) and

Tz(év Do T2(21 ) have n eigenvalues inside and n eigenvalues outside the unit circle,
respectively.
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3. For each k, partition the product of the orthogonal transformation matrices from
(3.6) into four n x n blocks (with Y l(lf) nonsingular [33, 50]) as

®  yl
ZiOx = ryor,
Ry po |

21 22

4. Compute Xy =: X(t)att=(k— 1A, k=1,...,N,as

k k)\—
Xi = Yz(l)(Yl(l)) g

To obtain the solution of the PRDE between two discretization moments fy =
(k—1)A and ty = kA, the methods described in [15, 16] can be used to integrate the
PRDE (1.1) in backward time with X (tf) = Xy1.

3.5 Multi-shot method based on a deflating subspace of a lifted pencil

The multi-shot method using a stable deflating subspace of a lifted pencil is presented
in Algorithm 2. It is based on Algorithm 1 (computing the transition matrices in
Step 1 is the same), but utilizes the fast algorithm in Sect. 3.3.2 for computing a
stable subspace. The fast multi-shot approach takes advantage of that the solution
X (¢) at two successive time steps (k — 1) A and kA are related as [10]

(k) (k)
Q0 Py, j|
(k) k) |’

Py Py

3.7
where Xy =: X(¢t) att =(k—1)A,k=1,..., N, and @ is partitioned in four n x n
blocks.

-1
k k k k .
Xi=(Xen @) = o) (of) = Xeri @) with o = [

Algorithm 2

1. Compute the transition matrices @1, ..., @y by solving the linear Hamiltonian
system (3.1) for each interval [(k — 1)A, kA], where k =1,..., N.

2. Use the fast algorithm as outlined in Sect. 3.3.2, to compute the regular pencil
51\; — zUz(éV -b containing all finite eigenvalues of S — zT in (3.4) associated
with the cyclic 2n x 2n matrix @, k =1, ..., N. Notably, the lifted matrix pencil
S — zT is not explicitly constructed.

3. Partition the transformation matrix Z in (3.5) into four n x n blocks as

Zy Zn
Z = ,
[221 222}

where the first n columns of Z span the stable right deflating subspace of
51\/ — zUz(év_l). Compute the initial solution to (3.7) as X| = Zo1(Z1) L.
4. Compute Xy, k=N,N —1,..., 1, iteratively using (3.7), with X1 = X1.

An iterative refinement of accuracy can be performed by repeating the convergent
process at Step 4 above 2—3 times, where a new initial solution X is computed from
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X5 using (3.7). We remark that the implementation of Algorithm 2 can be realized
using standard robust numerical routines [49].

3.6 MATLAB implementations

To compute the stable invariant subspace, the multi-shot method based on the ordered
PRSF uses Fortran subroutines for computing the PRSF [38] and periodic eigenvalue
reordering [23] (to be available in the upcoming PEP toolbox [24]). The (fast) multi-
shot method based on a deflating subspace of a lifted pencil is available in the Pe-
riodic System Toolbox for MATLAB [48]. To solve the linear Hamiltonian system,
builtin ODE solvers in MATLAB and a new MATLAB implementation of the sym-
plectic Gauss Runge-Kutta method are used.

4 A convex optimization approach

A second approach to find a stabilizing solution for the PRDE (1.1) is based on
convex optimization. By reformulating the PRDE as a convex optimization problem
the solution can be obtained by solving a SDP problem with LMI constraints. This
method has been proposed in [18] and an improved version is presented in Sect. 4.2.
But first, necessary theory for the stabilizing solution is introduced in Sect. 4.1, and
we end with a brief overview of the MATLAB implementation in Sect. 4.3.

4.1 Extremal property of stabilizing solution

Define the Riccati operator R of (1.1) as

RX®),)=X{1)+ADOTX(1)+ X(0)A@W) — XO)BOR®O'BOTX 1)+ 0@).

4.1
The following theorem regarding the existence of a stabilizing solution, and proved
in [1, 13], is a slight generalization of a theorem in [8]. Note that there is no positive
definite assumption on Q(7).

Theorem 4.1 [1, 13] Suppose that R(t) = I,,, Q(t) = Q(t)T, (A(t), B(t)) is sta-
bilizable and that there exists a T -periodic stabilizing solution X (t) of the Riccati
differential inequality
R(X(t),t) >0, forallt=>0. 4.2)
Then there exists a T -periodic solution X (t) of the PRDE (1.1), where
Xi(@)=>X(t), forallt=>0. “4.3)

In particular, X1 (t) satisfying (4.3) is called the maximal T -periodic stabilizing so-
lution.
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Notably, the theorem also holds for the cases R(¢) # I, or when R(?) is time-
varying since R(¢) can be transformed into R(¢) = I, by change of input coordinates.

For a set of matrices W; = WT = 0 and L distinct time instances ¢ j =0, where
j=1,..., L, define the functional

L
J(X(0)=> tr(W;X(t)). (4.4)

j=1

Here tr(M) denotes the trace of a matrix M. The inequality (4.3) implies that
tr(W; X (¢;)) > tr(W; X (¢;)) for all z;. Consequently, it follows from Theorem 4.1
that a maximum of (4.4) over the set of bounded matrices X (¢), satisfying (4.2), is
achieved at the stabilizing solution X (¢) [18], i.e., J(X4+(¢)) > J(X(¢)) forall X (z).

4.2 Reformulation of the PRDE

As stated in the end of Sect. 4.1, the maximal stabilizing solution X (¢) of the PRDE
(1.1) also maximizes the cost function J in (4.4). To compute X (¢) an infinite di-
mensional SDP problem can be solved, for which the linear functional J is maxi-
mized over a convex set of matrices X (¢), satisfying the inequality (4.2). To solve this
infinite dimensional optimization problem we first approximate it with a sequence of
finite dimensional problems.

From the Schur complement,* it follows that the Riccati inequality (4.2) associated
with the T -periodic PRDE (1.1) can be reformulated as the LMI

S(X(1),1) =0, (4.5)
where
v T
SO0 [x(r) + A1) X(t)T—i- X(1)A@) + (1) X(t)B(t):|  orall 120,
B(OTX (1) R(t)

and X(1) + X(DA@) + AT X (1) + Q@) is symmetric. The next step is to approx-
imate the stabilizing solution and its derivative by a truncated series of the solution
written in a rich class of basis functions. These basis functions can be chosen such that
the periodic characteristics of the underlying system are emphasized. A widely used
approximation of periodic matrices relies on truncated Fourier expansions, which are
used in the following. Let w =27/T and ¢ > 1, g € N, then

~ I dX(t) & '

X@)= Y e*'X;. and = > tkwe* ' Xy, (4.6)
k=—q k=—q

where X _j is the complex conjugate of Xy, k=1,...,q. Consequently, S(X (¢), )

can be approximated by S; = S(X(¢;), tj), where 0 < ¢; < T are some time instances

and j =1,..., L for a suitable integer L.

4The Schur complement of the block D of the matrix [2 g] isA—BDIC.
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We can now formulate the finite dimensional SDP problem as

min  —J(X(1)),

4.7
s.t. S./'ZO, j=1,...,L,
where the objective function is obtained from (4.4) using X (1) in (4.6):
L q
JX@)y=> uw|w; Y e*lix;|. (4.8)

j=1 k=—q

Note that minimizing —J (}? (1)) is equivglent to maximizing J (i (t)). By solving
(4.7) an approximate stabilizing solution X (¢) of (1.1) can be computed, where

q
lim X, ()= lim Y e*'X; =X, (1), foralltelt,T].
g—>00 q%ook:_q

Let a general SDP problem have ngpp variables and an mspp X mspp LMI
constraint matrix. Then the global worst-case complexity for a dense SDP prob-
lem is O(mggpnspp(mgpp + nspp) log(1/¢)), where ¢ is the desired accuracy [45].
In practice, the complexity is much lower. For the SDP problem (4.7) we have
(2q + Dn(n + 1)/2 variables and the (n +m)L x (n + m)L block diagonal matrix
diag(Sy, ..., Sp) forms the LMI constraints. The original outline of the method [18]
had a smaller number of LMI constraints (mspp) but depended on a larger number of
variables (nspp).

4.3 The MATLAB implementation

The MATLAB implementation uses SeDuMi [42, 45] (a MATLAB toolbox for op-
timization over symmetric cones) to solve the SDP problem and YALMIP [37] for
modeling the optimization problem. In the MATLAB implementation, the weight ma-
trices Wy, ..., W in (4.8) are all set to the identity matrix. However, these matrices
could be used as tuning parameters in the SDP problem.

5 Numerical experiments

Focusing on two important problem parameters (number of states n and the length of
the period T'), we evaluate the three methods to solve the PRDE described in the pre-
vious sections: the multi-shot method based on ordered PRSF, the multi-shot method
based on the fast algorithm, and the convex optimization approach. These are further
compared against the periodic generator method realized as in [30, 31, 47]. Below,
the corresponding solvers for the four methods are called the multi-shot solver, the
fast multi-shot solver, the SDP solver, and the one-shot solver, respectively.
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For the two multi-shot methods we solve the linear Hamiltonian system (3.1) us-
ing three different ODE solvers: the two general purpose MATLAB ODE solvers
ode45 (Dormand-Prince Runge-Kutta (4,5)) and ode113 (variable order Adams-
Bashforth-Moulton PECE), and sgrk a MATLAB implementation of the symplectic
6-stage Gauss Runge-Kutta method with fixed time steps. For ode45 and ode113 we
use the relative tolerance 10~2 and the absolute tolerance 10!, For sgrk we use
an initial value of 4 time steps, and if no convergence in the fixed-point iteration is
achieved the time steps are doubled until convergence or 64 time steps are reached.

Based on previous studies [31], only sgrk is used together with the one-shot solver.
For the SDP solver we use default options for both SeDuMi and YALMIP. The best
results from the SDP solver have a relative error in the solution around 1071,

When nothing else is stated, the number of time instances N in the product of
the transition matrices (3.2) in the multi-shot methods is set to N = 100. We have
based our choice of N on the results in [31, 49]. For consistency, the number of time
instances L of the LMI constraints in (4.7) is set to L = N. Moreover, the stabilizing
solution and its derivative are approximated with the truncated Fourier expansion as
in (4.6) with ¢ = 10 (one could argue to set g higher or lower, but g = 10 has shown
to be a good compromise).

The implementations of the three PRDE solvers have been done in MATLAB, uti-
lizing built-in functions and gateways to existing Fortran subroutines. Version 1.21 of
SeDuMi and version R20090505 of YALMIP have been used in the SDP solver. All
computations were carried out in double precision (emach = 2.2 - 10_16) on an Intel
Core Duo T7200 (2 GHz) with 2 GB memory, running Windows XP> and 32-bit ver-
sion of MATLAB® R2009b. The maximum amount of memory that can be allocated
by MATLAB on a 32-bit Windows XP operating system is 2 GB.”

5.1 A set of artificial systems

In the first set of examples, we investigate the sensitivity of the PRDE solvers with
respect to two parameters: number of states (n) and length of period (7) of the as-
sociated periodic linear system. This is achieved by evaluating the accuracy of the
solution of the PRDE associated with two artificial periodic linear systems, which
have known solutions.

We start by considering a linear time-invariant (LTI) system

x(t) = Ax(t) + Bu(), x(tp) = xo, 5.1

with n states and m inputs, i.e., A € R"*" and B € R"*™ and search for a u(t), for
which the quadratic performance index

/000 [xTQx + uTRu] dt,

SWindows is a registered trademark of Microsoft Corporation.
OMATLAB is registered trademark of The MathWorks, Inc.

"In practice, approximately only 1.2 GB is available.
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is minimized. If the problem has a solution and the minimum is finite for any x, then,
as known, the optimal control signal can be found as u*(t) = —Kx(¢), where K =
R™'BT X. The matrix X € R"*" is the stabilizing solution of the algebraic Riccati
equation (ARE)

ATX+XA—-XBR'BTX+0=0. (5.2)

To solve (5.2) an existing stable solver is used [4, 35], e.g., care in MATLAB or
preferably slcaresc in SLICOT [44].

Next, the LTI system (5.1) is transformed into a periodic linear system by change
of system coordinates: z(r) = G(¢)x(t), where z(¢) is the state vector in the new
coordinates and

G(t) = diag(G (1), ..., (1) with G(t) = [ cos(wr) Si“(“”)} ,

—sin(wt) cos(wt)

for a given @ > 0. Notably, the number of states in x(¢) is a multiple of two. This
results in the 7 -periodic linear control system

() = A()z(t) + B(u(r), (5.3)

where

~ dG(t) _1 _1 ~

A(t) = TG(t) + G(t)AG(1) and B(t) =G(1)B,
with period T = 2w /w. The quadratic performance index (1.2) for the resulting
transformed system (5.3) has the weighting matrices Q(¢) = G T QG(t)_1 and
R(t) = R. The optimal feedback of (5.3) can now be expressed as

uwt(t) = —K()z(t) = —R BT X(1)z(),

where X (1x) = X is the computed solution of the PRDE (1.1) at f = (k — 1)T/N.
The solution 5(\(t) :=G(@)"TXG()™", where X is the solution of (5.2), corresponds
to the exact solution at time ¢.

The accuracy of the computed solution X () is evaluated using the relative error
erel of the PRDE solution with respect to the reference solution X (t), computed as

N ~ -~
||Xk—Xk||F>
e = B - — N,
el Z( %ar )

k=1

where X, k= X ((k —1)T/N). The fact that the found approximation X (t) can indeed
be used for stabilization of the linear system (5.3), is additionally checked by simu-
lations on a closed-loop linear system modeled in Simulink.® In the simulation, the
computed solution X (t) is approximated with a truncated Fourier expansion (like in
(4.6)), and the initial states of (5.3) are all chosen to one.

8Simulink is registered trademark of The MathWorks, Inc.
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Two periodic linear systems (5.3) are used for the tests, denoted System 1 and
System 2. For both cases the weighting matrices Q and R of the corresponding LTI
system (5.1) were identities. The matrix A in (5.1) associated with System I is chosen
as an upper triangular n x n random matrix and B is a dense n x 2 random matrix.
For both matrices we use uniformly distributed random numbers (MATLAB rand) on
the open interval (—10, 10).

The state matrix A in (5.1) associated with System 2 is chosen as a Jordan block
of size n x n associated with the zero eigenvalue (with ones on the super-diagonal)
and B is chosen as e,, the n-th unit vector. This choice of A and B corresponds to an
LTI system with n integrators connected in series with a feedback controller applied
to the n-th integrator [35] (see also [34]).

5.1.1 Evaluation of the numerical methods with respect to number of states

The PRDE solvers are evaluated with respect to the number of states n (order of the
system) of System 1 and System 2 to answer the question: How does the number of
states affect the accuracy of the computed solution and what is the largest number of
states which can be addressed? For both System 1 and System 2 we use w = 2, so the
period of the resulting periodic linear system (5.3)is T = .

First we examine which ODE solver of ode45, ode113, or sgrk, is best suited
for solving the linear Hamiltonian system (3.1) in the multi-shot methods (Step 1 of
Algorithms 1 and 2). Table 1 indicates that the relative errors are of similar size, but as
the number of states n increases the run-time for ode45 increases rapidly, especially
for System 1. The preferred solver should either be ode113 or sgrk. For the coming
tests, we mainly use the symplectic solver sgrk as it is marginally more accurate and
faster than ode113.

Next, we solve the PRDE associated with the two systems using the four PRDE
solvers (including the one-shot solver). Sample results are displayed in Table 2.

For the small-sized problems (n < 20), the accuracy and run-time for the two
multi-shot solvers are quite similar. Both solvers compute a stabilizing solution up
to around 26 states, after that the approximation of the solution is poor or deviate
substantially from the trace of the reference solution. With increasing n and problem

Table 1 The accuracy of the PRDE solution and run-time using the multi-shot solver with different ODE
solvers. Sample results are shown for increasing size n of the periodic linear systems: System 1 and Sys-
tem 2

Relative error (run-time [sec])

n Multi-shot, ode45 Multi-shot, ode113 Multi-shot, sgrk
System 1 4 7.1-10715 (6.6) 14-10713 (3.8) 8.0-10713 (3.6)
16 15-1079 (28) 1.6-107° (6.8) 9.9.10710 (7.0)
26 6.3-1071 (117) 1.6 a7 4.1-1071 (15)
System 2 4 29.10714 (5.8) 22-10714 (3.2) 20-10714 (3.1
16 14-10"8 9.6) 2.4-1078 (4.8) 1.1-1078 (4.6)
26 29.1073 1) 1.4-1073 an 2.7-1073 (8.6)
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Table 2 Accuracy and run-time results for the PRDE solvers for different sizes n of the periodic linear
systems: System 1 and System 2. N.S. denotes that the computed solution is not stabilizing

System 1; Relative error (run-time [sec])

n Multi-shot, sgrk Fast multi-shot, sgrk SDP One-shot, sgrk

4 4410715 (36 48-100  @3.6) 2.1-10~11 (73) NS. (25)
10 58-10712 (58 28-1071 (54 1.0-10710 (96) N.S. (61)
16 93-10013 (74 21.10712 (7.6 1.4-1011 (1162) N.S. 95)
20 1.1-10710 0y 7.9-1071 (10) Out of memory (=) N.S. (102)
26 76-1007  (16) NS 15) Out of memory (=) N.S. (140)
30 6.6-107%  (16) 7.4-1073  (16) Out of memory  (-) N.S. (155)
36 47-1000 (28) N.S. (29) Out of memory (=) N.S. (360)

System 2; Relative error (run-time [sec])

n Multi-shot, sgrk Fast multi-shot, sgrk SDP One-shot, sgrk

4  20-107% @31 5810005 (29 45.10~ 1 6.9  42-1072 (1.9)
10 15-1071 (35 46-10712  (34) 41-107H1 (53) 44-1072  (22)
16 1.1-1078 (46 22.-1077 (4.5) Fail “) 44-1072  (2.9)
20 25-1000 (55 14-1007 (5.9 Out of memory () 44.1072  (3.5)
26 2.7-100° (86 1.0-100* (.1 Out of memory () 45.1072 (5.1
30 15-1000 0 13 25.100%2 (12 Out of memory (=) N.S. (5.9)
36 N.S. 19) 2.1 (18) Out of memory  (-) N.S. (11

complexity, the computed PRDE solutions are examined by simulation on a closed-
loop linear system. The reliability of the solvers is determined by examining the
convergence of the input u(¢) to the zero reference solution. As an example we con-
sider Fig. 1, which shows u(#) for System 1 and System 2, respectively, with n = 30.
The multi-shot solver is the better choice for System 1, whereas X1 q)f’;) — cbg;) in
(3.7) becomes ill-conditioned in the fast multi-shot solver. On the other hand, the fast
multi-shot solver is the better choice for System 2.

For both systems, the SDP solver runs out of memory when the number of states
exceeds 16. The reason is the high number of variables together with the high di-
mension of the LMI constraints. Moreover, for System 2 with 16 states the objective
function for the SDP problem is unbounded and therefore the solver fails. As we see,
the run-time for the SDP solver also increases rapidly together with the size n.

The one-shot solver encounters difficulties with both systems. For System 1 it
cannot even compute a stabilizing solution for n = 4, and for System 2 non-smooth
peaks in u(¢) appear in the closed-loop simulation already from n = 4.

5.1.2 Evaluation of the numerical methods with respect to length of period
The PRDE solvers are evaluated on System 1 and System 2 with different increasing
periods T, while keeping the number of states constant (n = 4). As the period T is

increased the constant NV in (3.2) and (4.7) with L = N is chosen as shown in Table 3.
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System 2; (a) System 2; (b)

Fig. 1 Results obtained by simulating a closed-loop linear system using System 1 and System 2, where
n = 30 and the solution of PRDE is computed with: (a) multi-shot solver using sgrk, (b) fast multi-shot
solver using sgrk. The graphs show the convergence of u(¢) to the zero reference solution

Table 3 Number of time instances N chosen for increasing period T

Period T 27 27 - 10 27 - 10% 27 - 103 27 - 10% 27 - 10°
N 100 100 100 1000 1000 10000
A=T/N 0.063 0.63 6.3 6.3 63 63

The multi-shot solvers encounter difficulties with System 1 for large periods but
have no difficulties computing a solution with high accuracy for System 2, see Ta-
ble 4. For System 1, the multi-shot solvers using sgrk have a rather low accuracy
already at T = 27 - 10 and at a period of 27 - 10* (and larger) they fail to compute
any solution due to a too large gap in the eigenvalues of the monodromy matrix. Par-
ticularly, the computed eigenvalues do not appear in reciprocal pairs. To illustrate the
importance of using a symplectic ODE solver for problems with large period, also
the results from the non-symplectic ode113 are presented.

The run-time and the memory requirement for the SDP solver are only depending
on the choice of N and the number of states n; they are not affected by the period 7' of
the system. For both systems, the SDP solver performs very good up to 7 = 27 - 10*.
Only after that, when the number of time instances N is increased to 10000, the size
of the LMI constraints gets too big and the SDP solver runs out of memory.

As can be expected, the one-shot solver cannot for any period compute a stabiliz-
ing solution for System 1, and for System 2 it can only do so for a period of 2.
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Table 4 Accuracy and run-time results for the PRDE solvers for different period lengths 7' of the periodic
linear systems: System 1 and System 2. N.S. denotes that the computed solution is not stabilizing

System 1; Relative error (run-time [sec])

Period Multi-shot, ode113 Multi-shot, sgrk SDP

27 1.2-10712 (3.6) 2.1-10714 (4.0) 33.107 1 (71.3)
27 - 10 22-10712 (6.4) 2.6-10711 18) 1.7-1071 (1.7)
27 - 10% Fail “) 3.1-1076 (116) 3.6-10711 (7.8)
27 - 103 Fail &) 2.8-1077 (1156) 2210711 (65)
27 -10*  Fail &) Fail ) 2210711 (65)
27 - 10° Fail =) Fail -) Out of memory =)

Fast multi-shot, ode113 Fast multi-shot, sgrk One-shot, sgrk

2 12-10712 (3.5) 2.0-10714 4.0) N.S. (37
27 - 10 2.9.10712 6.3) 2.6-10711 (18) N.S. (7.0
27-102  Fail &) 3.1-107° (115) N.S. (0.8)
27 - 103 Fail “) 2.8-1077 161) N.S. 1.0
27-10*  Fail “) Fail “) Fail “)
27 - 10° Fail ©) Fail ©) Fail ©)

System 2; Relative error (run-time [sec])

Period Multi-shot, ode113 Multi-shot, sgrk SDP

27 3.2-10714 (3.3) 1.1-10714 (3.0) 1.4-10710 (7.0
27 - 10 5.6-10715 “.1) 7.2-10715 “.1) 8.8-10711 (7.0)
27 - 102 5.8.10712 (1.9) 6.4-10"12 amn 49.10~ 1 (7.2)
27 103 7.7-10713 (70) 6.4-10713 (168) 24.107H1 (63)
27 - 104 Fail ©) 1.0-1071 (1602) 23.10711 (64)
27 - 103 Fail “) 1.2-10712 (16698) Out of memory “)

Fast multi-shot, ode113 Fast multi-shot, sgrk One-shot, sgrk

2 1.9.-10714 (3.2) 5.9.10715 (2.9) 42-1072 1.9)
27 - 10 5.0-1015 (4.8) 6.1-10715 (4.5) N.S. 7
27 - 102 5.8-10712 6.9) 6.4-10712 (16) N.S. 10)
27 - 103 7.7-10713 (69) 6.4-10~13 (164) N.S. (7.3)
27 - 10* Fail “) 1.1-10711 (1582) N.S. (1.4)
27 - 10° Fail “) 2410712 (16614) N.S. 2.9)

5.2 Examples of orbital stabilization of cycles for mechanical systems

The solvers are also used for deriving feedback controllers for orbital stabilization
of non-trivial periodic solutions for two mechanical systems, where the first one can
have an arbitrary large number of degrees of freedom, and the second one can have
a cycle of arbitrary large period. Here nonlinear controllers are constructed based on
linear ones found by stabilizing transverse dynamics of the systems along cycles [21].
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Fig. 2 V identical 0, N
cart-pendulum systems. The
coordinates xi, ..., Xy -

represent positions of the carts :

along the horizontal axis,

01, ..., 0y are the angles of the . .

pendulums with respect to the " Yp ] Ll
vertical axis, and uq,...,uy are

the control inputs

5.2.1 Synchronization of oscillations of cart-pendulum systems

The first example is stable synchronization of forced oscillations of V copies of iden-
tical cart-pendulum systems around their unstable equilibriums,” see Fig. 2. Assum-
ing that for each system the masses of the cart and the pendulum are 1 [kg], and
the distance from the suspension to the center of mass of the pendulum is 1 [m], the
dynamics have the form

2%; + cos(6)0; — sin(6;,)0? =u; and  cos(6)i; 4 6; — gsin(6;) =0,  (5.4)

where i = 1,...,V and g is the acceleration due to gravity. The system has 2V
degrees of freedom (x;, 8;) and V control variables (u;).

Planning a cycle: Suppose the twice continuously differentiable function ¢ (-) is
chosen such that the invariance of the relations

x1=¢(61), x2=¢02), ..., xy=¢(0), (5.5)
results in V identical equations with6 =6;,i =1,...,V,
a(0)6 + B©O)6* +y () =0, (5.6)

which has a T-periodic solution'? 0, (1) =6, (t + T). Here
a(0) =cos(@)p'(0)+1,  B(O) =cos(@)¢” (), and y ()= —gsin(9).
The solutions written in pairs for all systems

[61 =0.(1), xi=¢ O (1))], ..., [Ov=0.0), xv =0 O(1))], (5.7

are the synchronous oscillations of all V cart-pendulum systems.

Orbital stabilization of (5.7) can be achieved from a stabilization of the origin of
the linearization of the transverse dynamics of (5.4) along the cycle (5.7). As shown in
[21], the transverse linearization of (5.4) along the cycle (5.7) is the T -periodic linear

9The steps for motion planning and analytical arguments for controller design are from [21].

10The way to plan a cycle for one cart-pendulum system and to make it orbitally stable is described in [40].
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control system, whose coefficients, the matrices A(¢) and B(¢), can be computed as

d |1 ayi(t) 0 0 I, buu@ 0 0
7= 0 0 hy_1||ye|+]| O 0 0 Ve,
Ve 0 An@) As() ] | Ve B3i1(t) --- B3v()

where the state vector has n = 4V — 1 states with I, € R!, Ve € R2V-1 Ve € R2V-1
and the control vector v, has m = V control inputs, v, € RV,

28(0.(0))6, 20564 ()0
Here ayy (1) = =20, by (1) = — 255000, and

Az =diag(0,...,0|a(t),...,a()),

A3z =diag(0,...,0|ay (1), ..., a1 (1)),

B3 =[1,0,0,...,0|b(1),b(t),...,b(n)]",

B3 =1[0,1,0,...,0| —b(1),0,...,0]",

B33 =1[0,0,1,...,0]0,—b(),0,...,01", ...,
By =[0,0,...,0,1]0,...,0,—b®)]",

. _ [BO)OZO)+y O] 0u() B 02D+ (02 (1)) _ cos(6, ()
with a(t) = 20.0) a(6,) and b(1) = =S 0y -
We use the |-notation above (instead of a comma sign) in order to show that every-

thing to the left of | is of size (length) V and everything to the right is of size V — 1.
As argued in [40], the function ¢ (-) in (5.5) can be chosen to meet various specifi-
cations on a periodic motion, e.g., its period, amplitude etc. For instance, with the
choice

B g 1+ sin(0)
) =—[1+ E]l"g (W) (5.9)

there are oscillations of each of the cart-pendulum systems around their unstable
equilibria of period T ~ 27 /w, where o > 0.

By solving the PRDE for the periodic linear control system (5.8) with reasonably
chosen performance index we find a stabilizing controller for transverse linearization
and can construct a nonlinear controller which synchronously stabilize the oscilla-
tions of the pendulums and carts [21]. For the PRDE, we use the constant weighting
matrix R = Iy and the (4V — 1) x (4V — 1) time-varying diagonal weighting matrix

10
VOO + 812

Using the one-shot solver together with sgrk we are only able to compute a sta-
bilizing solution for two carts. Using the multi-shot solver together with sgrk, we
successfully compute (limited by the memory) a stabilizing solution for 40 carts
(n =159 and m = 40) and with the fast multi-shot solver together with sgrk for 50
carts (n = 199 and m = 50). Figure 3 shows the simulation of the closed-loop nonlin-

Q(t) =diag(fi(t),3,...,3), where f,(¢) =
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0 5 10 15 20 0 5 10 15 20

Time [sec] Time [sec]
Fig. 3 Simulation of V =40 pendulums on carts. The coordinates x;, i =1,..., 40, are the positions of
the carts along the horizontal axis (left figure). The angles 6;,i =1, ..., 40, are the angles of the pendulums

with respect to the vertical axis (right figure)

ear system'! for 40 carts simulated over 20 seconds with the target trajectory of the
period T =~ 5 [sec] and the amplitude 0.2 [rad]. The initial states of the pendulums
and carts are chosen randomly in vicinity of the tangent orbit. We do not run into
any numerical difficulties with the solvers and it is possible to compute a stabilizing
solution for a much higher number of carts. For example, on a 64-bit Linux operating
system with the 64-bit version of MATLAB (which provides the possibility to access
up to 8TB of memory), the PRDE has successfully been solved for (at least) 150
carts. However, the available memory is still a limit on how high we can increase the
number of states of the system.

The SDP solver, however, can only compute a stabilizing solution for three carts.
For a larger number of carts the memory requirement is too high. To conclude, it is
not suitable to use the SDP solver for this problem with a large number of carts. For
example, with 40 carts the SDP problem has 521520 variables and 19900 constraints.

5.2.2 Orbital stabilization of Furuta pendulum

The Furuta pendulum [22] is a mechanical system with two degrees of freedom (see
Fig. 4), where ¢ denotes the angle of the arm rotating in the horizontal plane, and
0 is the angle of the pendulum attached to the end of the arm. The arm is directly
actuated by a DC-motor, while the pendulum can freely rotate in the vertical plane
perpendicular to the arm. The equations of motion of the Furuta pendulum are [19]:

(p1 + p2sin®(0))¢ + p3cos(0)d + pasin(20)6¢p — ps3 sin(0)6% = 7, 510

p3¢0s(8)$ + (p2 + ps)d — pasin() cos(9)¢* — pasin(@) =0,

where 74 is the external torque that allows us to control the rotation of the arm. The
constants py, ..., p5 are positive and defined by physical parameters of the system.
For the present setup (see Fig. 4), they are:

p1=1.8777-1073, pr=1.3122-1073,
p3 =9.0675-1074, p4=5.9301-10"2, and ps=1.77-10"%

1gee [21] for a nonlinear feedback design for (5.4) based on stabilization of transverse linearization (5.8).
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Fig. 4 An illustration of the
Furuta pendulum built at
Department of Applied Physics
and Electronics, Umed
University, where length of arm
lq = 0.15 [m] and length of
pendulum /;, = 0.26 [m].
Moreover, mass of arm is

0.298 [kg], mass of pendulum is
3.2-10~2 [kg], and mass of bob
at the end of the pendulum is

7.5-1073 [ke]
Fig. 5 Two homoclinic curves Target
of the equilibrium at =0 are : periodic
shown on the phase portrait. o(t) traject
jectory
One intersects the f-axis at a;
and the other at a;. The dashed ;T SN
line illustrates one example of a /[ " | a2\ \ o(t)
periodic trajectory orbiting the _or ‘~\ (> I or
two homoclinic curves [20] N - h ST 7

To plan forced oscillations of the Furuta pendulum with large periods, we suggest
searching for its homoclinic curves. It is shown in [20] that the geometrical relation
kept invariant between the angles of the Furuta pendulum by a control input

0.01(p2 + ps) 6.6(p2 + ps)
—_— << —

¢ =& arctan(f), with & (5.11)
pP3 p3
results in the following reduced dynamics of the 6-angle
a () + B0 +y(9) =0,
with y (0) = —p4 sin(f) and
@(O) = p2+ps + % p®) = % (2p30 +Ep2sin(®))

For the choice (5.11) the upright equilibrium 6 = 0 of this system has two homoclinic
curves surrounded by periodic solutions, see Fig. 5. Their periods tend to infinity as
long as the initial conditions are chosen close to the homoclinic curves. The lineariza-
tion of transverse dynamics along any such nontrivial periodic motion

0u(1) =0,(t + T), ¢« (1) = & arctan(6, (1)), (5.12)
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can be computed analytically and has the form

FRRS an@) 0 ap® ||l bi(t)
o Yo | = 0 0 1 Yo |+ ]| 0 | v, (5.13)
15y, 0 0 0 Ve 1

where the T -periodic coefficients of A(-) and B(-) are

20,(1) (6, (1)) 4& 7 sin 6, (1) cos 0, (1)02(t)
ap(t) =——————+——, ai3(t) = 3 ,
a(6.(1)) (L+02(1)a(0«(2))
bi(t) = 26, (1) p3 cos (6, (1))
TR ()

Following the arguments of [21], we can synthesize the orbitally stabilizing con-
troller for the cycle (5.12) provided that we stabilize the origin of the transverse lin-
earization (5.13). To this end, the gain & in (5.11) has been chosen equal to 1/7. For
stabilizing the origin of (5.13) we search for a stabilizing solution of the PRDE with
the constant weighting matrix R = 10 and with the time-varying weighting matrix

Q(r) = diag(f (1), f,,0.01), where f.(1) = 0.05,/6(r)2 +6(1)2,

and f, is the mean of f,(t) over one period 7.

By using the one-shot solver together with ode45 to solve the PRDE, a periodic
trajectory with the period T & 4.045 seconds has successfully been stabilized on a
physical set-up of the Furuta pendulum. We here show that a stabilizing solution with
a period of at least 7' & 8.249 seconds can be found by using the SDP solver.

As mentioned earlier, a desired target orbit can be obtained by choosing the initial
conditions such that they approach the homoclinic curves:

#(0)=0, $0)=0, 0(0)=0, and 6(0)=¢,

where ¢ # 0. By choosing ¢ close to zero we can, theoretically, find an orbit with an
arbitrary large period 7. However, numerically it is not possible to chose the initial
states too close to the upright equilibrium (6(0) = 0 and 6(0) = 0), since at some
point the accuracy of the numerical methods will reach its limits.!?

Using the SDP solver, the largest period for which we find an orbital stabilizing
solution is T &~ 8.249 seconds (with ¢ = 0.004). Using any of the multi-shot solvers
together with sgrk, the largest period is 7' = 8.095 seconds (with ¢ = 0.005). Figure 6
shows the desired periodic cycle of the Furuta pendulum with 7" ~ 8.095, and Fig. 7
displays the results from the simulation of the closed-loop nonlinear system using
the PRDE solutions from the SDP solver and the multi-shot solver together with
sgrk (the results for the fast multi-shot solver are the same). The initial states used
are #(0) =7 and ¢(0) = 45(0) = 6(0) = 0, which correspond to the pendulum in

12For the physical setup there is also a limit of how large period we can obtain. This limit will (usually)
occur before the numerical methods become inaccurate.
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d6/dt [rad/sec]

6 -4 -2 0 2 4 6 0 5 . 10
8 [rad] Time [sec]

(2) (b)

15

Fig. 6 (a) Phase portrait of the Furuta pendulum with period 8.095 seconds. (b) Periodic trajectory of 6
as a function of time

15 6f
— 10t 4
3
@ 5f = 2
g o E o
3 .5 ® gt
D
©_10f -4}
-15 -6x ‘
-6 -4 -2 0 2 4 6 0 20 40 60 80 100
6 [rad] Simulation time [sec]
(@
15 6F
— 10} 4
3
o 5f = 2
g of g of
5 5 ® .2
D
©_10} -4
-15 -6x
=6 -4 -2 0 2 4 6 0 20 40 60 80 100
(e)[rad] Simulation time [sec]
C

Fig. 7 The resulting phase portrait (/eft) and the periodic trajectory of 6 (right) from simulation of orbital
stabilizing solutions with a periodic trajectory of 8.095 seconds: (a)-(b) using the PRDE solution from the
SDP solver. (¢)—(d) using the PRDE solution from the multi-shot solver

downwards position. As we can see both solutions converge to a periodic trajectory,
however, the solutions from the multi-shot solvers converge both faster and more
accurately towards the desired phase portrait of the Furuta pendulum.

6 Evaluation summary and conclusions

We have implemented three methods to solve the PRDE: (1) the multi-shot method
using the ordered PRSF to compute a stable invariant subspace of a cyclic matrix
product (Sect. 3.4); (2) the multi-shot method using the fast algorithm to compute
a stable deflating subspace of a lifted pencil (Sect. 3.5); and (3) the SDP method
based on a convex optimization approach (Sect. 4). The implementations of these
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three methods are called the multi-shot solver, the fast multi-shot solver, and the SDP
solver, respectively. Additionally, the classical periodic generator method has been
implemented and is called the one-shot solver (Sect. 3.2). The realizations have been
evaluated and compared on challenging problems including artificially constructed
periodic linear control systems with known solutions (Sect. 5.1), and on problems,
for which analytical solutions are unknown, from two real-world experimental stud-
ies (Sect. 5.2). They are associated with the task of orbital stabilization of forced
oscillations in controlled mechanical systems. In the first example, the PRDE solvers
are used to stabilize a linearization of transverse dynamics for synchronous forced
oscillations of a family of cart-pendulum systems (Sect. 5.2.1), and in the second, to
stabilize a linearization of transverse dynamics for a forced periodic motion of the
Furuta pendulum (Sect. 5.2.2).

For the two artificial systems the reliability of the solutions are evaluated both
quantitatively (relative errors and run-time results) and qualitatively (reliability mea-
surements of the stabilizing solution). For the mechanical systems, the reliability is
measured only qualitatively. In our evaluation, we have both considered the impact of
the size n of the PRDE and the length of the period 7 upon the computed solutions
for the different methods considered. These two problem parameters directly affect
the complexity of solving a PRDE (1.1) numerically. In Tables 5 and 6, we display
a summary of our findings from the numerical experiments documented in Sect. 5.
Note that we have only included solutions that can be considered highly reliable. For
example, the case n = 30 for System 2 solved with the multi-shot method using sgrk
is not considered highly reliable, since the input u(¢) in the simulated closed-loop
linear system oscillates as it converges to the reference solution, see Fig. 1.

Table 5 Summary of test results for the artificial systems. Each number in the table shows the largest n
or T which produces a highly reliable stabilizing solution for each solver and test case. Bold font indicates
the best case(s) for each system, and a dash (-) that no reliable stabilizing solution is found

Test case System Multi-shot Fast multi-shot SDP One-shot
sgrk ode113 sgrk ode113 sgrk
States n System 1 36 N/A 20 N/A 16 -
System 2 26 N/A 30 N/A 10 -

Period T System1  27-103  27-10 27103 27-10 27104 -
System2  27-10°  27-10% 27-10°5 27108 2710 -

Table 6 Summary of test results for the mechanical systems. Each number in the table shows the largest
number of cart-pendulum systems V or largest period T for the Furuta pendulum, which produces a highly
reliable stabilizing solution for each solver and system. Bold font indicates the best case

Mechanical system Multi-shot Fast multi-shot SDP One-shot
sgrk sgrk sgrk/ode45

Cart-pendulum n,V=m 159,40 199, 50 11,3 7,2

Furuta pendulum T 8.095 8.095 8.249 4.045
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The multi-shot and SDP methods are significantly better (with respect to accuracy
as well as stability) compared to the periodic generator method. Our results show
that the SDP solver is the best solver for small-sized systems (n < 20) with large
periods T'. The run-time for the SDP solver is independent of the period, and therefore
this solver is to be preferred for such systems as long as the memory requirement is
satisfied.

Moreover, our results show that the multi-shot solvers better cope with medium-
sized systems (20 < n < 500). Generally, the two multi-shot solvers produce rather
similar results both with respect to run-time and accuracy. For solving the underlying
Hamiltonian system the preferred ODE solver is a symplectic solver like the sym-
plectic Gauss Runge-Kutta. It is especially important to use a symplectic solver for
systems with large periods. Impressively, the multi-shot solver computing a reordered
periodic real Schur form handles cyclic matrix products of at least size N = 10000.

One major limitation of the SDP solver is the high storage requirement, which
depends on the size of the system considered. This memory issue can be critical, for
example, when the PRDE must be solved online in a physical setup or in real-world
(including offline) applications with a large number of degrees of freedom.

Conclusively, our numerical evaluation of the PRDE solvers demonstrates that
no single solver is the best for all examples considered. Depending on the problem
parameters n and T the choice should be one of the two multi-shot solvers or the
SDP solver. These three solvers always outperform the classical periodic generator
method.

Acknowledgements We want to thank Ernst Hairer for providing us with a Fortran implementation of
the Gauss Runge-Kutta method, which our MATLAB solver sgrk is based on. We also thank the referees
for their constructive comments.
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