
Problem 4.

The fundamental rep of SU(2), D( 1
2
), is the action of a 2x2 unitary matrix of determinant 1 on a

complex 2-vector(spinor). In index notation it looks like

ψα → ψ′α = N β
α ψβ , N ∈ SU(2) , α, β = 1, 2 .

We want to examine the action of SU(2) on the product space C2 ⊗ C2, spanned by Tαβ =∑
i ψ

(i)
α φ

(i)
β . Since there is only one antisymmetric 2x2 matrix (up to normalisation) we have the

important identity

Tαβ =
1

2
(Tαβ + Tβα) +

1

2
(Tαβ − Tβα) = T(αβ) + T[αβ] = T(αβ) +

1

2
εαβT

γ
γ

where the bracketed indices represent normalised symmetrisation and antisymmetrisation respec-

tively3. Now if T transforms under D( 1
2
) ⊗D( 1

2
) then, using N α′

α N β′

β εα′β′ = εαβ detN = εαβ, we

see that the above decomposition is invariant under the group action,

Tαβ → T ′αβ = N α′

α N β′

β Tα′β′ = N α′

α N β′

β T(α′β′) +
1

2
εαβT

γ
γ .

So we get the decomposition

D( 1
2
) ⊗D( 1

2
) = D(1) ⊕D(0) .

Now let T, S be symmetric spin-tensors transforming under D(1), ie Tαβ = T(αβ) and similarly for

S. First we symmetrise the last three indices in TαβSγδ

TαβSγδ = 3× 1

3
TαβSγδ +

1

3
(TαγSβδ − TαγSβδ + TαδSβγ − TαδSβγ)

= Tα(βSγδ) +
1

3

(
Tα[βSγ]δ + Tα[βSδ]γ)

)
= Tα(βSγδ) +Kαδεβγ +Kαγεβδ , Kαβ =

1

6
εδγTδαSβδ

Then we symmetrise the indices in the K’s and the final index in TαβSγδ:

TαβSγδ = T(αβSγδ) +K(βδ)εαγ +K(βγ)εαδ +K(αδ)εβγ +K(αγ)εβδ +
1

2
(εαδεβγ + εαγεβδ)trK.

All of the K(··) terms are nescessary to maintain the original symmetries of the RHS (and thus

can be restored from a single term by imposing said symmetries). Note that all of the terms

in the decomposition are individually invariant and irreducible under the action of SU(2). This

decomposition can be carried out for all of the terms in
∑

i T
(i)
αβS

(i)
γδ , thus we have

D(1) ⊗D(1) = D(2) ⊕D(1) ⊕D(0) .

It’s worth checking the dimensions of the two decompositions:

dim(D(m/2)) = 2m+ 1 so we have 2× 2 = 3 + 1 , and 3× 3 = 5 + 3 + 1 .

3Note that T γ
γ 6= trT , since the spinor indices are raised and lowered using the SU(2) metric, the ε-tensor.

Rather we have T γ
γ = εγδTδγ = ε12(T12 − T21).
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In terms of quantum mechanics the decompositions imply that a composite system of two spin-

half particles has two eigenvalues of the total squared angular momentum operator (J2 ∼ 2j+ 1),

1 and 3, (ie a singlet and a triplet state) and thus there are 4 spin states allowed: the triplet

can be either −1 = (↓↓), 0 = 1√
2
(↓↑ + ↑↓) or 1 = (↑↑) whilst the singlet is only allows spin

0 = 1√
2
(↓↑ − ↑↓). Similarly, the composite system of two spin-one particles has three eigenvalues

of the total squared angular momentum operator 1, 3 and 5, allowing total spins ranging from -2

to +2 (with appropriate multiplicities) in integer steps.

(Note that the spins in these decompositions always occur in integer steps since you have to contract two

indices at a time.)

Problem 5.

Let V be the space of holomorphic functions f(ζ) over C2, parametrised by complex row-vectors

ζα with α = 1, 2.

(a) Define a map

g 7→ T (g) ,
(
T (g)f

)
(ζ) := (f ◦Rg)(ζ) = f(ζg) , g ∈ SU(2) ,

(Rg is right multiplication by g). Repeated application gives(
T (h)

(
T (g)f

))
(ζ) =

(
T (g)f

)
(ζh) = f(ζhg) =

(
T (hg)f

)
(ζ) .

Thus T forms a representation of SU(2). The vector space this rep acts on is V , which is infinite

dimensional.

(b) Define an inner product on V ,

〈g|f〉 :=

∫
d2ζd2ζ̄ e−ζ

†ζg(ζ)f(ζ)

under the action of T this becomes

〈T (h)g|T (h)f〉 =

∫
d2ζd2ζ̄ e−ζ

†ζ(T (h)g)(ζ)(T (h)f)(ζ) =

∫
d2ζd2ζ̄ e−ζ

†ζg(ζh)f(ζh) .

Now shift the integration, ξ = ζh, and note that both ζ†ζ and the measure d2ζd2ζ̄ are SU(2)

invariants, ie
ζ†ζ = ζαζ̄α = ξβ(h†) α

β (ξγ(h†) α
γ )† = ξβ(h†) α

β h
γ
α ξ̄γ = ξ†ξ

and d2ξ = dξ1dξ2 = d(ζαh 1
α )d(ζαh 2

α ) = dζ1dζ2(h 1
1 h

2
2 − h 1

2 h
2

1 ) = d2ζ ,

since deth=1. Sim d2ξ̄ = deth†d2ζ̄ = d2ζ̄. This gives

〈T (h)g|T (h)f〉 =

∫
d2ξd2ξ̄ e−ξ

†ξg(ξ)f(ξ) = 〈g|f〉 ,

so T is a unitary rep of SU(2) under the above inner product.

(c) Let V(n) ⊂ V be the space of homogeneous polynomials of order n, ie

V(n) =

{
f(ζ) ∈ V | f(ζ) = Υα1...αnζ

α1 · · · ζαn ∼
n∑
i=0

υi (ζ1)i(ζ2)n−i

}
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note that the symbols Υα1...αn are totally symmetric. Let f ∈ V(n), then(
T (g)f

)
(ζ) = f(ζg) = Υα1...αn(ζα

′
1g α1

α′1
) · · · (ζα′ng αn

α′n
)

=
(
g α1

α′1
· · · g αn

α′n
Υα1...αn

)
ζα

′
1 · · · ζα′n = Υ′α1...αn

ζα1 · · · ζαn

So V(n) is invariant under T .

(d) In the above equation we can see that the action of T on V(n) is equivalent to the canonical

action of SU(2) on a symmetric, rank-n tensor, ie T |V(n) ' D(n
2
). More precisely, we can define a

map from the space of symmetric tensors to the space of homogeneous polynomials

W : S(n)(C)→ V(n) : ψα1...αn 7→ ψα1...αnζ
α1 · · · ζαn

so that for any rank-n symmetric tensor ψ = ψα1...αn we have

T (g)Wψ = WD(n
2
)ψ .

Note, that for matrix representations, the existence of such an intertwining map simply implies

the matrices are similar, ie T ∼ D ⇐⇒ T = WDW−1.

(e) To find the generators of the SU(2)-rep acting on V(n) we proceed in the standard manner:

Let g(t) be a curve in SU(2) passing through the unit at t = 0, then

d

dt

(
T (g(t))f

)
(ζ)
∣∣
t=0

=
d

dt
f(ζ g(t))

∣∣
t=0

=
∂f(ζ)

∂ζα
(
ζġ(0)

)α
=
(
ζġ(0)∂ζ

)
f(ζ) = T (ġ(0))f(ζ)

Since ġ(0) ∈ su(2) we can choose the ‘standard’ basis for the generators gi = si so that T (gi) =

ζσi∂ζ , they obey the standard su(2) commutation rules (as they should!)

[T (gi), T (gj)] = [ζσi∂ζ , ζσj∂ζ ] = ζ[σi, σj]∂ζ = 2iεijkT (gk) .

Now, if we act on f ∈ V(n) we get

T (gi)f(ζ) = ζσi∂ζ (Υα1...αnζ
α1 · · · ζαn) =

∑
k

Υα1...αn(ζσi)
αkζα1 · · · ζ̂αk · · · ζαn ,

where the ‘hat’ means that you exclude that term.
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Problem 6.

(a)
G =

{
Mat(5,R) 3 D(Λ, a) =

(
Λ a

0 1

) ∣∣∣ Λ ∈ O(3, 1) , a ∈ R3

}
That G is a group under matrix multiplication follows directly from the fact that O(3, 1) is a

group;

• group product = matrix product and so it is associative

• the product is closed: D(Λ2, a2)D(Λ1, a1) = D(Λ2Λ1,Λ2a1 + a2)

• the unit is in G: e = D(1, 1) ∈ G

• the inverse is in G: D(Λ−1,−Λ−1a)D(Λ, a) = D(1, 1)

The group product above shows that D : IO(3, 1) → G is a group homomorphism. Since D is

obviously bijective, it is actually an isomorphism.

(b) The representation D acts on R5 as

D(Λ, a)

(
x

y

)
=

(
Λx+ ay

y

)

For any ρ ∈ R we can decompose R5 as R5 = Vρ ⊕ V1 , Vρ = (R4, ρ) , V1 = (0,R). Now

Vρ is invariant under G, so D is a reducible representation, but V1 is not invariant, so D is not

completely reducible.

(c) O(3, 1) =
{

Λ ∈ GL(4,R) | ΛTηΛ = η , η = diag(−1, 1, 1, 1)
}

Let Λ(t) parametrise a curve in O(3, 1) passing through the unit element at t = 0, then

0 =
d

dt
Λ(t)TηΛ(t)

∣∣∣
t=0

= Λ̇T (0)η + ηΛ̇(0) .

So the Lie algebra of O(3, 1) is

so(3, 1) =
{
ω ∈ Mat(4,R) | ωTη + ηω = 0

}
where we’ve written the “s” for special because (using linearity and cyclicity of trace)

trω = 1
2
tr(ωT +ω) = 1

2
tr(ηωTη+ω) = 0, implying its exponentiation always has unit determinant.

In components, an element, ω = ηλ of so(3, 1) satisfies λµν + λνµ = 0, so it simply consists of

antisymmetric4 4×4 matrices. Thus has dimension six.

4Note that the symmetry of a linear map (matrix) can only be discussed in combination with a metric, so
that there is a natrual bijection between linear maps (one upper and one lower index) and bilinear forms (two
lowered indices). A bilinear form maps two vectors into a scalar, and thus you can discuss the symmetry properties
with respect to its two arguements. Normally when discussing matrices the standard, Euclidean metric is assumed
and indices are raised and lowered using the Kronecker delta, so that there is no difference between the matrix
considered as a linear map or a bilinear form. In the problem at hand, the metric used is that of Minkowski, ie η
and thus it matters whether an index is upper or lower.
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