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Abstract

In this document, the author presents a structure U with the property that
all structures are “elementarily embeddable” within it regardless of underlying
symbol set. The motivation is given by The Mathematical Universe article by
Max Tegmark, [6] and The Multiverse Hierarchy, [7], in which it is hypothesized
that reality is a¢ mathematical structure, left unspecified in both [6] and [7].
Consequently, it is hypothesized that the structure with the aforementioned
property could be central in the Mathematical Universe Hypothesis as being
the structure isomorphic to reality.

We will find a structure such that every structure is elementarily embeddable
within it. To that end, we will use a set theory with a universal set, New
Foundations with Urelements, NFU, which has been shown to be consistent [9,
section 7].

To accomplish our goals, some new definitions of isomorphism and what it
means to be elementarily embedded are presented in a way compatible with
working with differing symbol sets.

Part II includes a summary of relevant concepts of logic and NFU set theory
necessary to reach our goal. This is included so that this document is acces-
sible to a wider audience and may be skipped by readers familiar with these
subjects. Since the intended audience of this article includes people not versed
in mathematical logic, several elementary concepts are discussed.

Part 1
Discussion

In [6], Tegmark discusses two hypotheses: the external reality hypothesis (ERH)
and the mathematical universe hypothesis (MUH). To quote Tegmark, the ERH
is that “there exists an external physical reality completely independent of us
humans” and the MUH is that “our external physical reality is a mathematical
structure.” He argues that the ERH implies the MUH:

e A complete description of the external reality is called a TOE (theory of
everything).

e The ERH implies that for a description to be complete, it must be well-
defined also according to non-human sentient entities (say aliens or future
supercomputers) that lack the common understanding of concepts that we
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humans have evolved, e.g., “particle”, “observation” or indeed any other



English words. Put differently, such a description must be expressible in
a form that is devoid of human “baggage”.

e The ERH implies that a “theory of everything” has no baggage.

e Something that has a baggage-free description is precisely a mathemat-
ical structure. There are many equivalent ways of describing the same
structure, and a particular mathematical structure can be defined as an
equivalence class of descriptions. Thus, although any one description in-
volves some degree of arbitrariness (in notation, etc.), there is nothing
arbitrary about the mathematical structure itself.

e Therefore, the external physical reality described by the TOE is a math-
ematical structure.

Notice we can dispense with the words “external” and “physical” and a similar
argument shows that the first statement below implies the second:

(premise) “there exists a reality completely independent of us
humans”

(conclusion) “reality is a mathematical structure.”

A complete description of reality is called a TOE.

e The premise implies that for a description to be complete, it must be
expressible in a form that is devoid of human “baggage”.

e The premise plus the previous step implies that a TOE has no baggage.

Something that has a baggage-free description is precisely a mathematical
structure.

e Therefore, reality described by the TOE is a mathematical structure.

This premise is intended to be less controversial than the ERH but leading to
the same conclusion about a complete description of reality.

What is meant by the expression “mathematical structure?” [7] provides
an intuitive explanation of what a mathematical structure is by saying, “all
mathematical structures are just special cases of one and the same thing: so-
called formal systems. A formal system consists of abstract symbols and rules
for manipulating them, specifying how new strings of symbols referred to as
theorems can be derived from given ones referred to as axioms.”

A precise definition of mathematical structure will be discussed part II.
Regarding that precise definition, the set of abstract symbols corresponds to a
symbol set S which consists of constant symbols, function symbols, and relation
symbols. The rules for manipulating those symbols is given by what the author
calls structure maps which assign either a constant, a function, or a relation to
the symbols in S. These structure maps are rules for the interpretation of the
symbols in S.



In [7], Tegmark argues for there being no more than four types of parallel
universes. Moreover, he writes that the so-called Level IV multiverse employs
a sort of “mathematical democracy,” meaning that parallels governed by other
equations are equally real. Furthermore, we argued that reality is a mathemat-
ical structure. This document means to progress towards an answer
to the question, “which mathematical structure is isomorphic (and
hence equivalent) to reality?” Tegmark’s most recent article on the subject,
[7], states “the true mathematical structure isomorphic to our universe, if it
exists, has not yet been found.”

We will investigate a structure U with the property that all structures are
elementarily embeddable within it.

If structure A; is elementarily embedded within structure As via an injec-
tive map, then A; is logically equivalent to a substructure of As. Therefore,
one could in some sense almost be correct in saying that A; is a substructure of
Ajs because A; is logically indistinguishable from a substructure of As. Conse-
quently, a structure in which all structures are elementarily embeddable within
it would entail that structure is, in a sense, the ultimate mathematical structure.

The author’s hypothesis is that a structure with the property that all struc-
tures are elementarily embeddable within it is (isomorphic to) reality.

Here is an outline of the steps towards finding such a structure:

1. Show that the set of all structures exists. The stratified comprehension
theorem borrowed NFU set theory enables us to show this set exists
by specifying a first-order formula that defines the statement, “x is an
S—structure,” where S is a symbol set.

2. Form a kind of product of all structures, called a reduced product, which
is a generalization of an ultraproduct. The set found in step one will be
the index set for this product and the family of structures used to form
the product.

3. It will be shown that every structure in the trivial reduced product U is
elementarily embeddable within the product. Therefore, the product of all
structures has the property that all structures are elementarily embeddable
within it.

Part 11
Background Concepts

1 Tools from NFU Set Theory

In this document, all sets are those consistent with NFU set theory. A textbook
on NFU, which is Quine’s New Foundations with extensionality weakened to
allow wurelements, is presented in [4]. Please note that NFU has been shown to
be consistent [see 9, section 7).



The tools mentioned in this section used in Part IIT form the foundation
for defining a structure with the property that all structures are elementarily
embeddable within it. For the purposes of this document, the most important
of these is the theorem of stratified comprehension which allows us to say a
wide variety of things are sets, such as the set of all structures with respect to
a language.

Axiom of the Universal Set. The set {x : = z}, also called V, exists.

A set of ordered n-tuples is called a relation. A binary relation is a set of
ordered pairs. If R is a binary relation, (x,y) € R is often denoted xzRy.

Axiom of Domains. If R is a binary relation, the set

dom (R) = {z : Iy (zRy)},

called the domain of R, exists.
Axiom of Inclusion. The set [C] := {(z,y) : ¢ C y} exists.
Theorem [€] := {(z,y) : © € y} does not exist.

A proof of this theorem, proved in the spirit of Russell’s Paradox, can be found
in [4].

Axiom of Projections. The following sets exist:
m ={((z,y),2):z,y €V}

and
T2 = {((I’y)vy) HEPRTIS V}

The following stratified comprehension theorem will prove to be an invaluable
tool later on. In order to discuss the theorem of stratified comprehension, we
first define a stratified formula.

Definition A formula ¢ of first-order logic involving no relation other than €,
1, T, or = is said to be stratified if it is possible to assign a non-negative
integer to each variable x in ¢, called the type of x, in such a way that

(a) Each variable has the same type wherever it appears.

(b) In each atomic formula x = y, xmy, xmey in @, the types of the variables
z and y are the same.

(c) In each atomic formula z € y in @, the type of y is one higher than the type
of .

Stratified Comprehension Theorem For each stratified formula ¢, the set
{z: ¢} exists.



This is proved in [4]. Note that the formula not (z € z) used in Russell’s Paradox
is not stratified because parts (a) and (c¢) can not simultaneously be satisfied.

Corollary [r — y] which is defined to be the set of all functions from z to y,
exists by the stratified comprehension theorem.

Axiom of Singletons For every object z, the set {z} = {y:y =z} exists,
and is called the singleton of x.

The power set of a set x, denoted P (), is the set of all subsets of x:
P (z):=dom ([C]NV x {z}).

This set exists by the axioms of domains, inclusion, universal set, and sin-
gletons.

2 Elements of First-Order Logic

This section is a summary of topics in logic that will serve us later on. Most
the material in this section is drawn from [2] and [3] in addition to some new
material which involves a study of structures with differing symbol sets.

2.1 Symbol Sets
Symbol sets consist of the following:
1. a (possibly empty) set of constant symbols.
2. For every k > 1 a (possibly empty) set of k-ary function symbols;
3. For every k > 1 a (possibly empty) set of k-ary relation symbols.
A k-ary function on A is any function from A* — A and k-ary relation on

a set A is any subset of A*.

2.2 Structures

A pair (A, @) is a structure of a symbol set S if and only if A is a set and « is
a map whose domain is S with the following properties:

1. for every constant symbol ¢ € S, a(c) € A,
2. for every k-ary function symbol f € S, a(f) is a k-ary function on A, and
3. for every k-ary relation symbol R € S, « (R) is a k-ary relation on A.

Such a structure is called an S-structure.
For example, let A be the set of integers and S = {z,p, [} a symbol set where
z is a constant symbol, p is a binary function symbol, and [ is a binary relation



symbol. Define a map « so that a (z) = 0, « (p) is the usual plus operation, and
a (1) is the usual less than relation. Then (A, «) is an S-structure.

Script letters will denote structures and if A =(A,«) is a structure, A is
called the universe (or domain) of \A. The author will call such an « a struc-
ture map. For all constant symbols ¢ € S, a (¢) is denoted ¢, for all function
symbols f € S, a(f) is denoted f, and for all relation symbols R € S, a (R)
is denoted RA.

2.3 Terms

Given a symbol set S, 7 is an S—term if one of the following conditions hold:
1. 7 is a constant;
2. T is a variable; or
3. there is a k-ary function symbol f € S and S—terms 7y,...,7; such that 7

is fry..7g.

2.4 Atomic Formulas

Intuitively, atomic formulas are meant to represent statements that cannot be
broken down any further using connectives and quantifiers.
More precisely, we say that ¢ is an atomic S—formula if either

1. there is a k-ary relation symbol R € S and there are S—terms 7,...,7%
such that ¢ is R7y...7 or

2. there are S—terms 7; and 75 such that ¢ is 71 = 7».

2.5 Non-atomic Formulas, Logical Connectives, and Quan-
tifiers

The following are called logical connectives:

’ connective meaning

not
and
or
conditional
biconditional
equality

HTldl<i>l1

Also, there are two quantifiers 3 and V meaning “there exists” and “for all,”
respectively.
A generic S—formula is defined inductively as follows:

o If ¢ is an S—formula, then so is —¢;



If ¢1 and ¢ are S—formulas, then so is ¢1 ® ¢o where ® could be any of
the connectives other than the negation symbol;

If ¢ is an S—formula and z is a variable, then Jz¢ is an S—formula;

If ¢ is an S—formula and z is a variable, then Vz¢ is an S—formula; and

¢ is an S—formula only if either it is an atomic S—formula or a formula
obtained by finitely many applications of the above rules.

Note that some of these symbols can be defined in terms of —, V, and 3 which
will make future definitions and induction proofs more compact. Let ¢y and ¢o
be S—formulas and x a variable.

’ logical symbol \ interpretation ‘
1A P2 = (291 V ~¢2)
1 — @2 —¢1V do
$1 < P2 (0 (0p1 vV d2) Vo (d1 Vo))
Vo, —Jz-¢y

2.6 Induction Principle for Formulas

In order to show that all S-formulas have a certain property P, it is sufficient
to show:

1. Every atomic S-formula has the property P.
2. If the S-formula ¢ has the property P, then —¢ also has property P.

3. If ¢ and ¢o are S-formulas that have property P, then ¢1 A ¢2, ¢1 V ¢,
$1 — ¢2, and ¢y <> ¢o also have property P.

4. If the S-formula ¢ has the property P and if x is a variable, then Vx¢ and
dx¢ also have property P.

These four steps intuitively follow the inductive definition of formulas but we
can actually save ourselves some trouble by using the fact that A, —, <>, and V
can be eliminated; therefore to prove that all S-formulas have a property P, it
is sufficient to show:

1. Every atomic S-formula has the property P.
2. If the S-formula ¢ has the property P, then —¢ also has property P.

3. If ¢ and ¢ are S-formulas that have property P, ¢1V ¢ also has property
P.

4. If the S-formula ¢ has the property P and if x is a variable, then Jz¢ also
has property P.



2.7 Sentences and n-Formulas
The set of variables, varg, in an S-term is defined inductively where = is a
variable, ¢ is a constant, f is a k-ary function, and 71,..., 7, are terms:

varg (z) :=x
varg (¢) ==

varg (fm...7k) == U varg (7;) .
1<j<k
Fix a symbol set S. The set of free variables in a formula ¢, denoted
by free (¢) is defined inductively where 71,..., 7 are terms, and R is a k-ary

relation:
free (11 = 1) := varg (11) Uvarg (72)

free (R7y ... 7%) = U varg (7;)

1<j<k

free (—¢) := free (¢)
free (1 V ¢o) := free (¢1) U free (¢2)

free (Jz¢) := free (¢) — {z}.

Due to the ability to reduce the necessary list of connectives and quantifiers
down to just -, V, and 3, this definition effectively applies to all formulas.

Consequently, the following are true:

free (¢p1 A ¢2) = free (¢1) U free (¢2)
free (91 — ¢2) = free (¢1) U free (¢2)
free (¢1 < ¢2) = free (¢p1) U free (¢2)

free (Va¢) = free (¢) — {z} .

A closed formula, also known as a sentence, is a formula ¢ such that
free (p) = @. An n-formula ¢ is a formula such that free (¢) has n elements.
Thus, a closed formula has no free variables while an n-formula has n free

variables.



2.8 The Satisfaction Relation, Assignments, and Interpre-
tations

An assignment in an S-structure A is a map a : {v, : n € N} — A of the set
of variables into the universe of A.

An S-interpretation J is a pair (A, a) consisting of an S-structure .4 and
an assignment a in A.

If a is an assignment in A, a € A, and x is a variable, then let aZ be the
assignment in A defined as follows:

a if x,
) :{ W) .fyf

a ify=um.
If 3= (A a)let 3¢ := (A a2).

Definition Fix a symbol set S. For a variable z, let J(x) := a(z). For a
constant symbol ¢ € S, let J (c) := ¢*. For a k-ary function symbol f € S
and terms 7,..., Tk, let

J(fri...m) = fAO () ... T ().

This definition effectively defines J (1) for a term 7.

Definition Let 7q,...,7; be terms, ¢, ¢1, and ¢o be formulas, and R a k-ary
relation symbol all with respect to a symbol set S. We say that 7 = (A, a)
is a model of ¢, J satisfies ¢, or that ¢ holds in J, and write J = ¢, if

3):7'1:7'2 iff j(T]):j(TQ)

JERm...7 iff RAT(11) ... 3 (k)
JE—¢ iff not J =¢

J ): (qbl A (bg) iff J ):(Zsl and J ':¢2

JE (41 V) iff J g1 or J =g

JE(p1 = @) iff if 7 =¢1 then J oo

JE (14 ¢2) iff J |=¢, if and only if J oo
J = Vo iff forallac A, 7% = ¢

J = Jz¢ iff there is an a € A such that 3¢ = ¢

2.9 Structures as Models, more on Satisfaction

The following fact is a corollary to what is known as the “Coincidence Lemma,”
which can be found in [2 pg. 35]: for an S-formula ¢ and an S-interpretation
J = (A, a), the validity of ¢ under J depends only on the assignments for the
finitely many variables occurring free in ¢ and on the interpretation of the
symbols of S in A. If these variables are among vy,...,v,, it is at most the

a-values a; = a(v;) for ¢ = 1,...,n which are significant. Thus, instead of
(A, a) = ¢, we shall often use the more suggestive notation
A )Zd)(al,...,an).



When ¢ is a sentence, we will write

Al ¢,

without even mentioning an assignment. In that case we say that A is a
model of ¢. For a set of sentences ¢, A = & means that A | ¢ for every
¢ <.

A E ¢(ai,...,a,) denotes that structure A satisfies formula ¢ (i.e., ¢ is
true in A) when the variables free (¢) = {vy,...,v,} are replaced by the values
ai,...,a, everywhere in ¢.

2.10 Symbolic Manipulation in Formulas

Suppose that S; and Sy are two symbol sets. A map o : S; — Sy is called
structure preserving if the following conditions hold:

1. if ¢ € Sy is a constant symbol then o (¢) is a constant symbol in Ss.

2. if f is a k—ary function symbol in Sy then o (f) is a k—ary function symbol
in SQ.

3. if Ris a k—ary relation symbol in Sy then o (R) is a k—ary relation symbol
in SQ.

Now suppose o is a structure preserving map from S; to S3. Let ¢ be an
S1—formula.

Definition The Sp;—formula o (¢) to be the result of making the following
replacements:

e Every constant symbol ¢ € Sy that occurs in ¢ is replaced by o (¢) .
e Every k—ary function symbol f€ S; that occurs in ¢ is replaced by o (f).

e Every k—ary relation symbol R € S that occurs in ¢ is replaced by o (R).

2.11 Generalization of Isomorphism Concept

We present a definition of isomorphism between structures that don’t necessarily
have the same symbol set.

Let A be an S;—structure and B be an Ss—structure. We say that A and B
are isomorphic if there are two maps, o : S; — S and g : A — B such that all
of the following conditions hold:

1. o is a bijection, i.e., S7 and S5 are equipollent via the function o.
2. o is structure preserving.
3. g is a bijection such that:

(a) for all constant symbols ¢ € Sy, g (¢*) = o (¢)°.

10



(b) if f € Sy is a k-ary function symbol and (a1, ...,a) is any tuple in
AF then

g (fA(ar,ar)) =0 (/)P (g(ar), ... g (ar)).

(c¢) if R € Sy is a k-ary relation symbol and (a1, ...,ax) is any tuple in
AF then

RA (a1, ...,a5) <= o (R)® (g (a1), ..., g (ar)) .

Theorem This definition of isomorphism indeed generalizes the concept of iso-
morphism when the two structures have the same symbol set. In other
words, if A and B are S—structures, then they are isomorphic in this sense
if and only if they are isomorphic in the usual sense.

Proof. Note that we can take ¢ to be the identity function on S. In that event,
o () =cB, o(f)° =5, and o (R)® = RB.

2.12 Elementary Embedding Generalization

Let M be an S; —structure and A/ be an Sy —structure. A function F : M — N is
called an elementary embedding if and only if there is a structure preserving
o : 51 — S5 such that for all n — S;—formulas ¢ and for all mq,...,m,, in M,

MES(m,....mp) <= N Eoc (o) (F(m1),...F(m,)).

If M and N are two structures, we say M can be elementarily embedded
in NV if there is such an elementary embedding. Denote this by M < N.

Theorem This definition of elementary embedding indeed generalizes the con-
cept of elementary embedding when the two structures have the same
symbol set. Note that we can again take o to be the identity function on
the underlying symbol set.

3 Reduced Products of Structures

Now we proceed to a variant of a reduced product of structures. Much of this
material is drawn from [3]. The path toward a structure with the property
that all structures, regardless of their symbol set, are elementarily embeddable
within it, is to provide a suitable universe paired with a suitable structure map.

Fix a family of symbol sets {.S; : ¢ € I'} where I is a nonempty set and that
for all ¢ € I, A; is an S;-structure. Define S = J,.; Si. Then A, the reduced
product of these structures, is defined as follows:

el

1. (Definition of the Universe) The universe A of A is the set functions defined
as follows. Let [],.; A; denote the set

[14: = {76 l[%UAi

i€l i€l

Vi (@ (4) eAi)}.

11



A, the universe of A, is defined to be [],.; A;. Recall that [z — y] is the
set of all functions from x to y. This is the usual Cartesian product of
the family {A,; : i € I} . Elements of the universe of A are functions whose
domain is I and the i*® coordinate is an element of A4;.

2. (Structure mapping of Constant Symbols) For every constant symbol ¢ in
S, let @ be the function that maps each i € I to ¢, and let ¢* = €.

3. (Structure mapping of Function Symbols) If f is a k-ary function symbol in
S, define f4 as follows. For k elements @1, ..., @5 in A, let fA (71, ceny 7k)
be the function that maps each i € I to fAi (1 (i),..., @ (7)), ie.,

FA(@ 1oy @) (1) = A (@1 (1) oy T (3))

4. (Structure mapping of Relation Symbols) If R is a k-ary relation symbol
in S, then R# is defined to be the following set

RAY = {(d1,.., dy) € A¥ Vi (W1 (4) ..., @y (i) € RA) }.
In other words, (71, - 7k) € RA if and only if for all indices i € I,

We now have all the ingredients for the trivial reduced product: a universe and
a structure map whose domain is a symbol set consisting of constant symbols,
function symbols, and relation symbols. Denote this structure by [],.; A; =: A.
A is an S—structure.

The following theorem will serve as an important step in proving the main
result.

iel

Theorem Fix a family of symbol sets {S; : i € I'} where I is a nonempty set
and that for all 7 € I, A; is an S;-structure. Let A =]],.; A;. Then for
all i € I, A; can be elementarily embedded in A via an injection.

Proof. Fix an ¢ and without loss of generality, assume ¢ is an arbitrary 1-
formula with symbols occurring in S;. Let o be the identity function on
S;. Let F; : A; — A be a function defined as follows. Select an 7, an
arbitrary element of A, and let b € A;. Define F; (b) € A so that

b if j =1,

@ (j) ifj#i.

(There are as many ways of defining F; as there are elements of A.) We
will show that

F; (b) () = {

Ail= ¢ (b) <= A= (9) (Fi (b))

In other words, we will show that

Ai = ¢(b) <= A= ¢ (Fi (b))
We will proceed by first proving the following lemma.

12



Lemma

AR ¢ (F; (b)) <= Vj € I (A; | ¢ (Fi(b) (1))
Proof. We proceed by induction. Step 1: ¢ is atomic.

e ¢is g = 79. Let J=(A,a) be an S—interpretation associated with the
structure A. Note that A |= ¢ (F; (b)) if and only if

Fi (b) Fi (b)

J—= =7= .

) =7 ()
Suppose 71 is fit1...t, and 72 is faug...uq, where each ¢ and u is an S—term
and that f; and fo are p—ary and g—ary function symbols, respectively.
Furthermore, allow p and ¢ to be zero in which case interpret 73 and/or

T9 as constants. Then 3@ (r1) = 3@ (7,) if and only if
NFi b F; NFZ‘ b F; (b
;7 (J gf ) (t1),-y 3 x( ) (tp)> = fi <J QE ) (1), 3 z( ) (uq)) :

By the definition of the reduced product, for all j € I, the preceding equation
holds if and only if

- <3Eg§b) (tz),-u,jFi (b) (tp)> G) = fY (gle(b) (ul)7,,,,sz‘ (b) (uq)> () -

x X

Thus,
Al ¢ (F; (b)) <= Vj € I (A; | ¢ (F; (D) (7))

e ¢ = Rry...7. Note that J |= ¢ (F; (b)) if and only if

RAj—Fix(b) (1) ...JF"x(b)

(7k) -

By the definition of the reduced product, the preceding expression holds
if and only if for all j € I,

FDG) () 5 F(0)G

RA3
Thus,
A= ¢ (Fi (b)) <= Vj € I (A; | ¢ (Fi (D) (7))
This completes the proof for atomic formulas.
Step 2: induction.

e ¢ = —). Suppose A = —) (F; (b)) and let j € I be arbitrary. Since it is not
the case that A =1 (F; (b)), it is not the case that A; = ¢ (F; (b) (4)) by
induction. Consequently, A; = = (F; (b) (j)). As j was arbitrary, Vj €
I(A; = (F;(b)(5))). For the converse, assume that Vj € I (A; = - (F; (b) (4))) -
To arrive at a contradiction, suppose it is not the case that A = —) (F; (b)).
Then A = ¢ (F; (b)). By induction, Vj € I(A; = (F;(b)(j))) which
contradicts our assumption.

13



e & = ¢1V da. Suppose A | (¢1 V d2) (F; (b)) and let j € I be arbitrary.
Either A = ¢ (F; (b)) or A = ¢2 (F; (b)), or both. Without loss of gener-
ality, assume A = ¢1 (F; (b)). By induction, A; = ¢; (F; (b) (§)). Conse-
quently, A; = (¢; V ¢2) (F; (b) (7)) follows. Again, since j was arbitrary,
we have Vj € I (A; = (¢1V ¢2) (F; (b)(5))). For the converse, assume
that Vj € I (A; = (1 V ¢2) (F; (D) (5))). To arrive at a contradiction,
suppose that it is not the case that A = (¢1 V ¢2) (F; (b)). From that, we
conclude that A = (=¢1 A —d2) (F; (b)). Consequently, A = -y (F; (b))
and A = —¢y (F; (b)). We have shown above that A = —¢1 (F; (b)) en-
tails Vj € I (Aj = ¢, (F; (b) (j))) and in addition that A = —¢s (F; (b))
entails Vj € I (A; = —¢2 (F; (b)(j))) from which we can conclude that
VjeI(Aj = (—¢1 A—dg) (F;(b)(j))) which contradicts our assumption.

e ¢ = Az If A = Jx¢ (F; (b),x), then there is a ¢ € A such that
A $(F(b), 7). By induction, Vj € I(A £ (F (1) (), ¢ (7))
Consequently, Vj € I(A; =3z (F; (D) (j),x)). For the converse, as-
sume that Vj € I(A; =3z (F; (D) (j),x)). To arrive at a contradic-
tion, assume it is not the case that A = Jz¢ (F; (b),x). Then A =
Va—p (F; (b),x). Thus for every @ € A we have A = — (F; (b),70).
As we have seen in the first part of the induction step, this implies
that for every @ € A we have Vj € I(A; == (F; (b) (4), 7 (4))); so
VieI(Aj =Yz (F;(b)(j),)), contradicting our assumption.

This completes the proof of the lemma.
Returning to the proof of the theorem, suppose that A; = ¢ (b) and, to arrive
at a contradiction, that A ¥ ¢ (F; (b)). A¥ ¢ (F; (b)) implies A = —¢ (F; (b)).
By the lemma,
Vi€ I(A; = 6 (Fi () (7))

In particular, A; = —¢ (F; (b) (4)), implying A; = —¢ (b) which contradicts the
assumption A; = ¢ (b).

For the other direction, suppose A |= ¢ (F; (b)). By the lemma, A; = ¢ (F; (b) (7)).
Consequently, A; = ¢ (D).

To show that Fj is injective, let b and &’ be elements of A; and suppose F; (b) =
F; (b'). That entails Vj € I(F;(b)(j) = F; (V') (). In particular, F; (b) (i) =
F; (t) (4), implying b =b". O

Part III
Building an Ultimate
Superstructure

We seek now to define a structure & with the property that all structures are
elementarily embeddable within it. To do this we will first obtain the set of all
structures which is made possible by the stratified comprehension theorem in
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part 2, section 1. We will form the reduced product of all structures. To that
end we will stipulate some definitions and then proceed to form the reduced
product of all structures.

Theorem The set I of all structures, inclusive of all symbol sets, exists.

Proof. Given an S-structure A = (A4, «), the formula X (S, A, @), to be defined
shortly, will be satisfied if and only if « is an S-structure map from symbol
set S to the union of A (constants), the set of all k-ary relations on A,
and the set of all k-ary functions on A.

Define the following sets A’ and A”:
Let A’ be the union of all k-ary functions on A for k > 1, i.e.,

A= [AF = 4]

k>1

Let A” be the union of all k-ary relations on A for k > 1, i.e.,

A= P (4Y).

k>1

Observe that for a symbol set S, « is an S-structure map if and only if the
conjunction of the following sub-formulas is true:

a€lS— (AuA UA")
(@ 15.) €[S — Al
(alSp) e[Sy — A

(a [ Sr) € [Sr— A"],

where S, Sy, and Sr are the possibly empty set of constant symbols, the
possibly empty set of function symbols, and the possibly empty set of relation
symbols in S, respectively. [ denotes function restriction.

Let X (S, A, ) be the aforementioned formula (the conjunction of those four
formulas). X (S, A4, a) is satisfied if and only if « is an S-structure map on an
S-structure whose universe is A.

Define ¢ (S, z) to be the formula 3A3a (z = (A, a) AE (S, 4, a)). ¢(5,z) is
satisfied if and only if = is an S-structure.

Finally, let I = {z : 35 (¢ (S, z))}. Thus, the set of all structures I exists by
the stratified comprehension theorem mentioned in part 2, section 1.[]

Definition To form the reduced product of all structures, define, for each ¢ € I,

.Ai =1. Let U= Hie] .AZ
The following theorem is the primary result of this paper.

Theorem Every structure, regardless of symbol set, can be elementarily em-
bedded within U via an injection.

15



Proof. This follows from the theorem in section 3 of Part II.CJ
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