
 
Polynomials with non commutative coefficients:  If R is any ring, not necessarily 
commutative, define the polynomial ring R[t] as usual, but where powers of t commute with all 
coefficients in R, although the coefficients may not commute among themselves. 
 
Hence f(t) = ∑ aiti = ∑ tiai, but if we set t = c, where c is in R, it makes a difference whether we 
set t = c in the first or the second of these expressions.  We call fr(c) = ∑ aici the right value of f 
at c, and fl(c) =  
∑ ciai, the left value of f at c. 
 
Remainder theorem: If f(t) is a polynomial in R[t], then we can write f(t) = (t-c)q(t) + fl(c) = 
p(t)(t-c) + fr(c), i.e. we can divide f(t) by (t-c) from the left, with remainder the left value of f at 
c, and similarly from the right.  The quotients and remainders are unique if we require the 
remainder belong to R. 
proof:  We do it for left evaluations and left division.  This is the binomial theorem, i.e. replace t 
in f(t), by (t-c)+c and expand.  We get in each term tiai, terms in which all but the last have a 
factor of (t-c), i.e.  
tiai = [(t-c)+c]i ai = [(t-c)q(t) + ci] ai.  Thus f(t) = ∑ tiai = (t-c)Q(t) + ∑ciai, and we see the 
remainder is indeed the left evaluation of f at c.   
This proves existence.  For uniqueness, assume f(t) = (t-c)q(t)+r = (t-c)(p(t)+s, where r,s belong 
to R.  Then (t-c)[q(t)-p(t)] = s-r.  Thus the left hand side also belongs to R.  But multiplication 
by (t-c) raises the degree by one, so the left ahnd side has degree ≥ 1, unless [q(t)-p(t)] = 0.  then 
also r-s = 0.  Hence both quotient and remainder are unique.  QED. 
 
 
Corollary: If f(t) is any polynomial in R[t], f is left divisible by (t-c) if and only if fl(c) = 0.  
Similarly for right divisibility. 
proof: The expression we gave shows that f(t) = (t-c)q(t) + fl(c), Hence if fl(c) = 0, then f is left 
divisible by (t-c).  Conversely, if f is left divisaible by (t-c), uniqueness shows the remainder, 
which is zero, must equal fl(c), so fl(c) 0.  QED.  
 
 Next to apply these results about divisibility of polynomials, to products of matrices, we 
prove that matrices with polynomial entries are equivalently polynomials with matrix 
coefficients. 
 
Lemma: If k is a field, the non commutative ring Matn(k[t]) of n by n matrices with entries from 
k[t], is isomorphic to Matn(k)[t], the ring of polynomials with coefficients in the non 
commutative ring Matn(k). 
proof:  Just as with commutative rings, a ring map R[t]-->S is obtained from a ring map R--->S 
plus a choice of element in S to send t to, only this time, since t commutes with R in R[t], we 
must choose as image of t, an element that commutes with the image of R in S.  So we map 
Matn(k) into Matn(k[t]) by viewing scalar matrices as polynomial matrices, and then send t to 



the matrix t.I, which is in the center of Matn(k[t]), i.e. it commutes with everything.  It is an 
exercise to check this ring map is injective and surjective.  QED. 
 
 It follows that if we have two matrices of polynomials and we multiply them as matrices, 
we get the same result by viewing them as polynomials with matrix entries, and multiplying them 
as polynomials. 
 
Corollary: Cayley Hamilton.  A square matrix A over a commutative ring R, is a root of its 
characteristic polynomial chA(t). 
proof:  By Cramer's rule, we have (tI-A).adj(tI-A) = chA(t).I, as products of matrices.  Then it 
holds also as products of polynomials.  Setting t = A gives zero on the left, hence also on the 
right side.  I.e. if chA(t) = ∑ tici, where the ci belong to R, then chA(t).I = (∑ tici).I = ∑ ti(ci.I).  
Thus setting t = A gives 0 = ∑ Ai(ci.I) =   ∑Ai(ci) = ∑ ciAi = chA(A). QED. 
 
 If in the lemma above, we think of the matrix on the left acting individually on each 
column vector of the matrix on the right, we can also consider matrices of polynomials acting on 
column vectors of polynomials, as multiplication from the left of polynomials with matrix 
coefficients, times polynomials with column vector coefficients.  I.e. the lemma also holds, with 
the same proof, for polynomials with coefficients in any ring R with identity, acting from the left 
on polynomials with coefficients in any (unitary) left module over R. 
 
 So let kn[t] denote polynomials with coefficients which are column vectors from kn.  This 
is not a ring, in particular the coefficents do not have an element 1, so this object does not contain 
t.  But the coefficients do contain the basic vectors ei, and we can multiply these by polynomials 
over k and add up.  In particular this object is a k[t] module, and is isomorphic as such to the free 
k[t] module (k[t])n.   
 I.e. if Ei are the standard free k[t] basis vectors in (k[t])n, just send Ei to ei, and ∑fiEi to 
∑fiei where fi are polynomials in k[t].  The expression ∑fiei can be re - expanded as a polynomial 
in t with vector coefficients by expanding each term as fei = (a0+a1t+...+tn)ei = (a0ei + t a1ei 
+...+ tnei), and then combining coefficients of like powers of t, from various terms, to get 
coefficient vectors. 
 
Exercise:  Show this gives a k[t] module isomorphism (k[t])n--->kn[t]. 
As we have remarked above, the previous lemma, shows multiplication of matrices corresponds 
to multiplication of polynomials, i.e.  the isomorphisms above, give isomorphisms of 
multiplication diagrams with matrix multiplication Matn(k[t]) x (k[t])n--->(k[t])n, corresponding 
to polynomial multiplication Matn(k)[t] x kn[t] ---> kn[t]. 
 
Now we can prove the main presentation theorem. 
 
Theorem:  Given any n by n matrix A over a field k, defining a k[t] module structure on kn, the 



k[t] module map (k[t])n--->kn, sending ∑ fi(t)Ei to ∑ fi(A)ei, is surjective, and its kernel is a free 
k[t] module, freely generated by the columns of [tI-A], the characteristic matrix of A.   I.e. this 
sequence is exact: 0--->(k[t])n--->(k[t])n--->kn--->0, as k[t] - modules, where the left map is 
multiplication by [tI-A]. 
proof:  We know the last map is surjective. 
 Recall the right map takes ∑fi(t)Ei to ∑fi(A)ei, which is exactly the result of viewing 
∑fi(t)Ei as a polynomial ∑fi(t)ei with coefficient vectors in kn, and then setting t = A.  So if we 
view these as maps of polynomials kn[t]--->kn[t]--->kn--->0, the right map kn[t]--->kn, is left 
evaluation of a polynomial f(t) with vector coefficients, at t = A.  By the factor theorem above, 
this is zero if and only if f(t) is left divisible by (t-A), i.e. if and only if f(t) is in the image of the 
left hand map kn[t]--->kn[t].   
 Since multiplication by a monic polynomial never sends a non zero polynomial to zero, 
the left map is injective.  Hence the sequence  
0--->(k[t])n--->(k[t])n--->kn--->0 is exact, and (tI-A) is indeed a presentation matrix for the 
module (kn,A).  QED. 


