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When one multiplies (21.83) by dr dx! dx? dx® and integrates to obtain the action
integral, the term (21.85) integrates oul to a surface term. Variations of the geometry
interior to this surface make no difference in the value of this surface term. Therefore
it has no influence on the equations of motion to drop the term (21.85). The result
of the calculation (exercise 21.10) is simple: what is left over after dropping the
divergence merely changes the sign of the terms in Tr K2 and (Tr K)? in (21.84).
Thus the variation principle becomes

(extremum) = [ pro0 = f £ nodified X
= (1/167) [ [R + (0 m((Tr K)2 = Te KOINgV2 didx + [ £py, dix.

This expression, rephrased, is the starting point for Arnowitt, Deser, and Misner's
analysis of the dynamics of geometry,

Two supplements from a paper of York (1972b; see also exercise 21.9) enlarge one’s
geometric insight into what is going on in the foregoing analysis. First, the tensor

of extrinsic curvature lets itself be defined [see also Fischer (1971)] most naturally
in the form

(21.86)

Kz—%%g Q1.87)

where g is the metric tensor of the 3-geometry, i is the timelike unit normal field,
and £ is the Lie derivative as defined in exercise 21.8. Second, the divergence (21.85),
which has to be added to the Lagrangian of (21.86) to obtain the full Hilbert
Lagrangian, is

=2A(=) 2T K + a™)] 4, (21.88)

where the coordinates are general (see exercise 21.10), and
a¥ = n“‘;ﬂ.nﬁ' (21.89)

is the 4-acceleration of an observer traveling along the timelike normal n to the
successive slices.

§21.7. THE ARNOWITT, DESER, AND MISNER FORMULATION
OF THE DYNAMICS OF GEOMETRY

Dirac (1959, 1964, and earlier references cited therein) formulated the dynamics of
geometry in a (3 + I}-dimensional form, using generalizations of Poisson brackets
and of Hamilton equations. Amowitt, Deser, and Misner instead made the Hiibert-
Palatini variational principle the foundation for this dynamics. Because of its sim-
plicity, this ADM (1962) approach is followed here. The gravitational part of the
integrand in the Hilbert-Palatini action principle is rewritten in the condensed bul
standard form (after inserting a 16« that ADM avoid by other units) as
1678 eomuue = Fgeomanm = —&y 0nY/3t — N¥ — NX*
-2 [.ﬂiiN‘, — lei Trn + Nli(g)l/z] .

ot

(21.90)
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Here each item of abbreviation has its special meaning and will play its special part,
a part foreshadowed by the name now given it:

“geometrodynamic
i) 8(&Cti0]‘l) _ ﬁeld momenFum, dyﬂ- W{f R iy ..
Thue = — 5. = | amically conjugate to | = ——; 7% = gl/2(ghTr K — KY)
Bgs; « . 167
the “geometrodynamic _
field coordinate” g (2191)

(here the #¥ of ADM is usually more convenient than #¥,); and
e = H(7iyer &) = (“super-Hamiltonian”) = % /167,

2192)
%(wii’gi)') = 3"1/2 (Tr n? —_ _2!_(Trn)2) — g]/ZR;

and
167% 4o = H* = K'(nY, ;) = (“supermomentum™) = —27% . (21.93)

Here the covariant derivative is formed treating #'* as a tensor density, as its
definition in (21.91) shows it to be (see §21.2). The quantities to be varied to
extremize the action are the coefficients in the metric of the 4-geometry, as follows;
the six g;. and the lapse function N and shift function #;; and also the six “‘geome-
trodynamic momenta,” #¥%. To vary these momenta as well as the metric is (1) to
follow the pattern of elementary Hamiltonian dynamics (Box 21.1), where, by taking
the momentum p to be as independently variable as the coordinate x, one arrives
at two Hamilton equations of the first order instead of one Lagrange equation of
the second order, and (2} 1o follow in some measure the lead of the Palatini variation
principle of §21.2. There, however, one had 40 connection coefficients to vary,
whereas here one has come down to only six #¥, To know these momenta and the
3-metric is to know the extrinsic curvature. Before carrying out the variation, drop
the divergence —2( }; from (21.90), since it gives rise only to surface integrals
and therefore in no way affects the equations of motion that will come out of the
variational principle. Also rewrite the first term in (21.90) in the form

—(3/D1)(g;m) + = og,. a1, (21.94)

and drop the complete time-derivative from the variation principle, again because
it is irrelevant to the resulting equations of motion. The action principle now takes
the form

extremum = [, = {,.../167

= (1/16m) f [ 8gy/3t — NA((x¥, g,,) — N.Xi(n¥, g )] d¥x
+ [ Fragdix. 2195
The action principle itself, here as always, tells one what must be fixed to make

the action take on a well-defined value (if and when the action possesses an extre-
mum). Apart from appropriate potentials having to do with fields other than geom-

Mamenia conjugate Lo the
dynamic g;;




