
Moment distribution method – Joint moments in a frame 
 
Take the propped-cantilevered beam shown.  It has no 
load.  We’d like to know the general relationship between 

a  and abM  (end moment of member ab at “a”) or baM  

(end moment of member ab at “b”) 
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Lock the structure so that there are four fixed-end beams.  Find the 
FEMs, including the total moment M at the center (ccw).  Create an 
opposite moment shown (cw moment M) to “unlock” the beam.  Joint j 
now rotates through an angle  .  Now, picture (e) is equivalent to 
picture (a) and we can proceed with the moment distribution. 
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If the members have the same E, but not necessarily the same I or L, 
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k  includes all members that connect at rotating joint (can vary 
depending on which end of beam) 
 
From (1) and (2),  
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These are called distributed moments (DMs).  D = distribution factor = 
 k

k
 

Assumes constant E – usually the case since beams made of different materials are rarely 
connected together. 
 
note:  D depends only on member dimensions.  The individual moments are just ratios of each 
other that add up to M – i.e. the “external” moment, M, is distributed among the connecting 
beams, according to their relative dimensions (stiffnesses). 
 

djcjbjaj m,m,m,m  - called the carry-over-moments, need to be found. 

baab MandM , which were found on the previous page, can be equated with a “carry-over-
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These are called carry-over-moments (COMs). 
)COM(m)DM(m)FEM(M jajajaja   

)COM(m)DM(m)FEM(M ajajajaj   

 
 
note:  It is not yet clear how to find end moments for a frame when there is more than one joint 
that can rotate 
 
note:  sign conventions will become clear in the following examples 
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Clockwise moments = positive  (FEMs can be found in Appendix B) 
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If there are multiple rotating joint, then the joints must be continually locked and unlocked until 
the carry-over-moments are considered negligible (see the following example) 
 



note:  For all cycles : At a fixed support, DM is zero.  At a joint across from a fixed support, 
COM is zero.  For a span with no load, FEM is zero (this does not necessarily mean that M = 0 
for that span). 
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e.g. 3 

 
 
 
 
 



OR 
(release joints simultaneously) 

 

 
note:  So far, joint translations are ignored in the moment distribution method.  This can have an 
effect on the accuracy of joint moments.  Previous analysis of the one bay frame (with beam 
uniformly loaded) resulted in the exact solution because it is symmetrical (and hence there are no 
relative displacements in the columns), and there is no side sway, from inspection.  Lateral 
loading and/or non-symmetrical gravity loading can cause joint translations. 
 
 
 



Modified stiffness method – Shortcut for certain special cases 
 

 Special cases : 
 
aj = the most basic member with a single DM at ja and 
COM at aj 
 
bj = supported by a pin 
 
cj = symmetrical 
 
dj = antisymmetrical 
 
 

 
 
Basic:  jaja k'k  , where 'k  = “modified stiffness factor” 
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e.g. 
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modified stiffness: 
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note:  only one cycle needed for this problem with modified stiffness approach 
 
note:  since the frame is symmetrical, we don’t really need to tabularize all of the moments, but 
rather just half of the frame 
 


