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A more coherent derivation of angular velocity and acceleration than my
initial attempt while first learning geometric algebra.

1 Angular velocity.

The goal is to take first and second derivatives of a vector expressed radially:

r = rr̂. (1)

The velocity is the derivative of our position vector, which in terms of radial
components is:

v = r′ = r′ r̂ + rr̂′. (2)

We can also calculate the projection and rejection of the velocity by multi-
plication by 1 = r̂2, and expanding this product in an alternate order taking
advantage of the associativity of the geometric product:

v = r̂r̂v
= r̂ (r̂ · v + r̂ ∧ v)

Since r̂ ∧ (r̂ ∧ v) = 0, the total velocity in terms of radial components is:

v = r̂ (r̂ · v) + r̂ · (r̂ ∧ v) . (3)

Here the first component above is the projection of the vector in the radial
direction:

Projr(v) = r̂ (r̂ · v)

This projective term can also be rewritten in terms of magnitude:(
r2

)′
= 2rr′ = (r · r)′ = 2r · v.
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So the magnitude variation can be expressed the radial coordinate of the
velocity:

r′ = r̂ · v (4)

The remainder is the rejection of the radial component from the velocity,
leaving just the part portion perpendicular to the radial direction.

Rejr(v) = r̂ · (r̂ ∧ v)
It is traditional to introduce an angular velocity vector normal to the plane

of rotation that describes this rejective component using a triple cross product.
With the formulation above, one can see that it is more natural to directly use
an angular velocity bivector instead:

Ω =
r ∧ v

r2 (5)

This bivector encodes the angular velocity as a plane directly. The prod-
uct of a vector with the bivector that contains it produces another vector in
the plane. That product is a scaled and rotated by 90 degrees, much like the
multiplication by a unit complex imaginary. That is no coincidence since the
square of a bivector is negative and directly encodes this complex structure of
an arbitarily oriented plane.

Using this angular velocity bivector we have the following radial expres-
sion for velocity:

v = r̂r′ + r · Ω. (6)

A little thought will show that r̂′ is also entirely perpendicular to r̂. The
r̂ vector describes a path traced out on the unit sphere, and any variation of
that vector must be tangential to the sphere. It is thus not suprising that we
can also express r̂′ using the rejective term of equation 3. Using the angular
velocity bivector this is:

r̂′ = r̂ · Ω. (7)

This identity will be useful below for the calculation of angular acceleration.

2 Angular acceleration.

Next we want the second derivitives of position

a = r′′

= r′′ r̂ + 2r′ r̂′ + rr̂′′

= r′′ r̂ +
1
r

(
r2 r̂′

)′
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This last step I found scribbled in a margin note in my old mechanics book.
It’s a trick that somebody clever once noticed and it simplifies this derivation
to use it since it avoids the generation of a number of terms that will just cancel
out anyways after more tedious manipulation (see examples section).

Expanding just this last deriviative:

(
r2 r̂′

)′
=

(
r2 r̂ · Ω

)′

= (r̂ · (r ∧ v))′

= (r̂ · (r ∧ v))′

= r̂′ · (r ∧ v) + r̂ · (v ∧ v︸ ︷︷ ︸
=0

) + r̂ · (r ∧ a)

Thus the acceleration is:

a = r′′ r̂ + (r · Ω) · Ω + r̂ · (r̂ ∧ a)

Note that the action of taking two successive dot products with the plane
bivector Ω just acts to rotate the vector by 180 degress (as well as scale it).

One can verify this explicitly using grade selection operators. This allows
the total acceleration to be expressed in the final form:

a = r′′ r̂ + rΩ2 + r̂ · (r̂ ∧ a)

Note that the squared bivector Ω2 is a negative scalar, so the first two terms
are radially directed. The last term is perpendicular to the accelaration, in the
plane formed by the vector and its second derivative.

Given the acceleration, the force on a particle is thus:

F = ma = mr̂r′′ + mrΩ2 +
r
r2 (r ∧ p)′

Writing the angular momentum as:

L = r ∧ p = mr2Ω

the force is thus:

F = ma = mr̂r′′ + mrΩ2 +
1
r
· dL

dt
The derivative of the angular momentum is called the torque τ, also a bivec-

tor:

τ =
dL
dt

When r is constant this has the radial arm times force form that we expect
of torque:
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τ = r ∧ dp
dt

= r ∧ F

We can also write the equation of motion in terms of torque, in which case
we have:

F = mr̂r′′ + mrΩ2 +
1
r
· τ

As with all these plane quantities (angular velocity, momentum, accelera-
tion), the torque as well is a bivector as it is natural to express this as a planar
quantity. This makes more sense in many ways than a cross product, since all
of these quantities should be perfectly well defined in a plane (or in spaces of
degree greater than three), whereas the cross product is a strictly three dimen-
sional entity.

3 Expressing these using traditional form (cross prod-
uct).

To compare with traditional results to see if I got things right, remove the ge-
ometric algebra constructs (wedge products and bivector/vector products) in
favour of cross products. Do this by using the duality relationships, multipli-
cation by the three dimensional psueduscalar i = e1e2e3, to convert bivectors
to vectors and wedge products to cross and dot products (u ∧ v = u × vi).

First define some vector quantities in terms of the corresponding bivectors:

ω = Ω/i =
r ∧ v
r2i

=
r × v

r2

r · Ω =
1
2
(rωi − ωir) = r ∧ ωi = ω × r

Thus the velocity is:

v = r̂r′ + ω × r.

In the same way, write the angular momentum vector as the dual of the
angular momentum bivector:

l = L/i = r × p = mr2ω

And the torque vector N as the dual of the torque bivector τ

N = τ/i =
dl
dt

=
d
dt

(r × p)

The equation of motion for a single particle then becomes:

F = mr̂r′′ − mr‖ω‖2 + N × r
r2
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4 Examples (perhaps future exercises?)

4.1 Unit vector deriviative.

Demonstrate by direct calculation the result of equation 7.

r̂′ =
( r

r

)′

=
r′

r
− rr′

r2

=
1
r

(v − r̂ (r̂ · v))

=
r̂
r

(r̂v − r̂ · v)

=
r̂
r

(r̂ ∧ v)

4.2 Direct calculation of acceleration.

It is more natural to calculate this acceleration directly by taking derivatives
of equation equation 6, but as noted above this is messier. Here is exactly that
calculation for comparison.

Taking second derivatives of the velocity we have:

v′ = a =
(

r̂r′ +
r
r2 (r ∧ v)

)′

a = r̂′r′ + r̂r′′ +
r
r2 (v ∧ v)︸ ︷︷ ︸

=0

+
r
r2 (r ∧ a) +

(
r̂
r

)′
(r ∧ v)

= r̂r′′ + r̂′
(

r′ +
1
r

r ∧ v
)
− r′

r̂
r2 (r ∧ v) + r̂ (r̂ ∧ a)

= r̂r′′ +
1
r3 r (r ∧ v)

(
r′ +

1
r

r ∧ v
)
− r′

r̂
r2 (r ∧ v) + r̂ (r̂ ∧ a)

The r′ terms cancel out, leaving just:

a = r̂r′′ + rΩ2 + r̂ (r̂ ∧ a)
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4.3 Expand the omega omega triple product.

(r · Ω) · Ω = 〈(r · Ω) Ω〉1

=
1
2

〈
rΩ2 − ΩrΩ

〉
1

=
1
2

rΩ2 − 1
2
〈ΩrΩ〉1

=
1
2

rΩ2 +
1
2
〈rΩΩ〉1

=
1
2

rΩ2 +
1
2

rΩ2

= rΩ2

Also used above implicitly was the following:

rΩ = r · Ω + r ∧ Ω︸ ︷︷ ︸
=0

= −Ω · r = −Ωr

(ie: a vector anticommutes with a bivector describing a plane that contains
it).
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