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Reentry

The problem for surviving reentry does not arise in every mission.

Most satellites are on one-way ride out of the Earth's atmosphere.

For LEO satellites, reentry will occur long after the useful lifetime.

For very high orbits, reentry might never occur.

Satellites are not designed to survive reentry forces and heat loading.
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Reentry

Surviving reentry is of a great importance for missions such as:

- ballistic missile (�rst to be tested)

- planetary-entry probes

- manned space missions
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Reentry

The Problem: how to dissipate the enormous amount of kinetic energy that is
concentrated in the spacecraft!

The kinetic energy per unit mass, E = 1
2v

2
c , where vc is the orbital velocity.

Huygens entered Titan's atmosphere with vc = 6.1 km/s.

The entry phase lasted 3 minutes!

The velocity was reduced to vc =0.4 km/s ! This is 93.7% ∆v change or 99.6%
kinetic energy per unit mass (J/kg) change (=dissipation).
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Reentry

A signi�cant fraction of the energy of the launch vehicle has been concentrated
in the spacecraft!

This energy must be dissipated during reentry! We cannot use a booster to
dissipate this energy as this would require a booster with the size of the original
one used for launch!
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Reentry

Atmospheric drag is used to slow the vehicle !

The rate at which drag dissipates energy is

dE/dt = D.v, since D ∼ v2,

the rate of energy dissipation is then proportional to ∼ v3.

To survive the high temperature during reentry we have to design the reentry
trajectory so that it is stretch over a long period time. This will reduce the
amount of energy dissipated per unit time, [J/s].

For Huygens, we have ∆vc = 6.3− 0.4 = 5.9 km/s, or 19.8 MJ/kg total kinetic
energy dissipated over 3 min. This corresponds to 110kJ/s/kg dissipated power.
The ceramic head shield on the probe will heat to up to 1800 degrees Celsius.
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Launch Dynamics

r, ν are the polar coordinates of the CM

h is the altitude

vc is the velocity

γ is the �ight path angle (the angle from the local horizon to vc)
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Launch Dynamics

Re radius of the planet where g has a constant value ge

The local acceleration due to gravity towards the center is

g = geR2
e

r2 = k
r2
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Launch Dynamics

v̇c = −ksin(γ)
r2 − D

m + 1
mTcos(ϕ), D = 1

2CdAρv2
c

γ̇ = −kcos(γ)
vcr2 + L

vcm
+ vccos(γ)

r + 1
vcm

Tsin(ϕ)

ν̇ = vc
cos(γ)

r

ṙ ≡ ḣ = vcsin(γ)

ṁ = − T
Isp
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Reentry Dynamics

To derive the motion of the vehicle during reentry, we can adopt the development
from last week (launch dynamics) to study the motion of a vehicle entering a
planetary atmosphere from orbital �ight. For athmospheric reentry,

1) γ is negative!

2) The thrust is zero, T = 0

3) The mass is constant, m = const
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Reentry Dynamics

mv̇c = −mgsin(γ)−D, D = 1
2CdAρv2

c

mvcγ̇ = −mgcos(γ) + mv2
ccos(γ)

r + L

ν̇ = vc
cos(γ)

r

ṙ ≡ ḣ = vcsin(γ)
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Ballistic Reentry

For ballistic reentry L = 0, and the equations for the motions become

mv̇c = −mgsin(γ)−D, D = 1
2CdAρv2

c

mvcγ̇ = −mgcos(γ)

ḣ = vcsin(γ)

ḋ = vccos(γ)
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Ballistic Reentry

To analyse the shape of the trajectory as a function of the altitude, we can use h
as an independent variable instead of t

mvc
v̇c

ḣ
= −mg − D

sin(γ)

γ̇

ḣ
= −gcot(γ)

v2
c

ḋ
ḣ

= cot(γ)

For steep entry angles, −γ ≈ 900, cot(γ) is small and the velocity is large. γ
would change very little and the downrange distance ḋ/ḣ is a straight line.
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Ballistic Reentry � vehicle deceleration

To �nd the de-acceleration (analytically) experienced from the vehicle (very
important for the construction of the vehicle and the contents), we have to
calculate the right hand side of

dvc
dt = −D

m

In the �gure above, the magnitude of the drag force is

|
−→
fd| = D = 1

2CdAv2
cρ
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Ballistic Reentry � vehicle deceleration

We can write the components of this force along {k} and {j} as

−→
fd = {−Dcos(γ)}j + {Dsin(γ)}k

The corresponding acceleration using the spacecraft's mass is

−→a =
−→
fd
m = {−D

mcos(γ)}j + {D
msin(γ)}k =

= {−CdAv2
cρ

2m cos(γ)}j + {CdAv2
cρ

2m sin(γ)}k
m

CdA = β = ballistic coe�cient of the vehicle.
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Ballistic Reentry � vehicle deceleration

It can be shown that the maximum deceleration is

amax = v2
c0sin(γ)

2H
1
e

where :

H is the scale height

vc0 is the initial velocity

γ is the �ight path angle
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Vehicle deceleration and atmospheric density

We calculated previously that a vehicle subject to drag force only experiences
deceleration

−→a =
−→
fd
m = {−D

mcos(γ)}j + {D
msin(γ)}k =

= {−CdAv2
cρ

2m cos(γ)}j + {CdAv2
cρ

2m sin(γ)}k

For steep entry with −γ = 900 we have

−→a = {CdAv2
cρ

2m sin(−900)}k = −CdAv2
cρ

2m k
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Vehicle deceleration and atmospheric density

Knowing the instantaneous value for the acceleration from an on-board accelerom-
eter and the velocity of the vehicle (by integrating the acceleration signal), we
can calculate the pro�le of the atmospheric density of the planet

ρ = m
CdA

2a
v2

c
, in [kg/m3]

Example:A = 10m2, Cd = 1, vc = 1km/s,m = 100kg, a = 20g.
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Vehicle deceleration and atmospheric density
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Low drag reentry
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Low drag reentry KD = − CDAH
msin(γ) is important for ballistic missile applications.

Low drag reentry minimises the trajectory curvature and hence disturbance e�ects
on vehicle, i.e. low targeting error.

Low drag reentry minimises atmospheric heating
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High drag reentry
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Planetary entry probes are designed to have high values for KD = − CDAH
msin(γ)

Since

amax = v2
c0sin(γ)

2H
1
e

small γ leads to small deceleration !
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Ballistic Reentry

For ballistic reentry, the lift was set to L = 0, and the equations for the motions
were reduced to

mv̇c = −mgsin(γ)−D

mvcγ̇ = −mgcos(γ)

ḣ = vcsin(γ)

ḋ = vccos(γ)

Although we can calculate and predict the trajectory � we do not have control
over the trajectory ! Still Ballistic reentry remains the simplest and possibly the
safest method. The limitation is that it works only for small-size probes.
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Skip Reentry

The idea dates from the World War II; Euger Sanger, a Swiss engineer, proposed
a vehicle that after launch from Germany would be able to bomb the US and
then return to the launch site. This would have been possible with e�cient
aerodynamic design.
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Skip Reentry

Adding a nonzero value for the lift, L > 0, change the equations to

mv̇c = −mgsin(γ)−D

mvcγ̇ = −mgcos(γ) + L

ḣ = vcsin(γ)

ḋ = vccos(γ)

When the Lift component is dominant over gravity, the �ight path will be turned
upward with γ̇ > 0. The vehicle enters the atmosphere, reaches a minimum
altitude and then pulls up and eventually exists the atmosphere at a reduced
speed.
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Skip Reentry

The lift and the drag forces are:

D = 1
2CDAρv2

c ,

L = 1
2CLAρv2

c

And for exponential atmosphere �ight, these become

D = 1
2CDAv2

cρ0e
−h/H ,

L = 1
2CLAv2

cρ0e
−h/H

CD and CL are the drag and lift coe�cients,

ρ0 = 1.2366kg/m3 is the base atmospheric density (Earth) and

H = 7.1628km is the height scale (Earth)
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Skip Reentry � velocity change

To analyse the velocity, we change the independent variables.

mv̇c = −1
2CDAv2

cρ0e
−h/H

mvcγ̇ = 1
2CLAv2

cρ0e
−h/H

mγ̇ = 1
2CLAvcρ0e

−h/H

mv̇c(mγ̇)
−1

= −1
2CDAv2

cρ0e−h/H

1
2CLAvcρ0e−h/H = −CD

CL
vc

v̇c
γ̇ = −CD

CL
vc∫ v

v0

1
vc

dvc =
∫ γ

γ0
−CD

CL
dγ

vc = v0e
−CD

CL
(γ−γ0), γ0 < 0

When the �ight path angle is monotonically increasing, the lift-to-drag ratio
CL/CD determines how fast the velocity would decrease with γ.
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Skip Reentry � velocity change
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Skip Reentry � Control over lift
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Skip Reentry � Guidance
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Skip Reentry

Ballistic reentry is always available for backup and Soyuz 33 (1979) used steep
ballistic reentry due to failure in the engine with deceleration of up to 10g (rather
than typical for this type of mission 3-4g). Recently the Soyuz TMA-1 (2002)
used ballistic reentry with decelerations of up to 8g due to failure in the control
system.

Lift to drag ration determines the downrange distance and hence landing site.
This was a big issue during the Cold War as a proper trajectory design and control
was needed to ensure that the capsule will not land in �enemy territory�. The
Soviet Zond4 probe, for example, was deliberately destroyed in 1968 because it
was falling into American hands.
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Problem

A Moon reentry vehicle uses a powered descent. The total thrust is 150 N and
the thrusters (Isp=320 sec) are rigidly mounted on the body; At a given moment
of time, it is known that the velocity of the vehicle is 150 m/s at an altitude of
15 km. For this vehicle:

a) Write down the equations of motions for the center of mass.

b) If the vehicle's dry mass is 250kg and the fuel is 80kg, how long would it take
to burn the fuel in full?

c) Derive the equations of motion for the case when the �ight-path angle is
approximately -90 degrees.

d) Using the assumptions made in c), write down the altitude and the velocity as
a function of time.
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