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Abstract

1 Introduction

The aim of physics is to describe the behaviour of objects in nature. These
objects are defined to be, as the name suggest, objective and hence inde-
pendent of who is looking at them. But since observers might use different
methods, say different units, to measure an object, these differences have
to be compensated by the numerical values in an inverse way. Therefore,
the description of an object has a dualistic character, due to the fact that
we want to describe an object invariantly.

Say, we want to work out how many cakes we have. Let’s look at the
dual structure. Let’s assume that one observer counts the cakes in whole
cakes, and the other observer cuts all the cakes in half to count them in
half cakes. For 5 cakes, the observers would find:

(5)(c) (1)

and
(2 ∗ 5)(2−1 ∗ c), (2)

demonstrating, that the units and the numerical values transform in-
versely to each other.

For vector spaces, we find the same dual structure in two ways. Firstly,
vectors themselves can describe an object in nature, for instance a dis-
tance in space-time. Since this distance is independent of the chosen basis
system, the coefficients and basis vectors have to transform inversely to
each other. Secondly, the length of a vector, defined through a metric, is
an invariant object as well. Therefore, the contraction of vectors, which
produces a scalar, will also result in a dual structure. This leads to the
definition of a dual vector space, different from the original one. Vectors
and dual vectors transform inversly to each other.

In a vector space, to create invariant objects, one has to combine
objects that transform inversely to each other. It is common practice to
distinguish these objects by upper and lower indices, and to combine them
by the summation convention over pairs of equal upper and lower indices.
Say, we start by giving vectors lower indices. Then, coefficients of vectors
have to have upper indices and so do dual vectors. On the other hand,
coefficients of dual vectors have to have lower indices.
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It is important to remember that the mathematical meaning is given
by the algebraic structure and that the upper and lower indices only serve
as a reminder of what algebraic structure we are dealing with.

The same can be said about matrices, as they are collections of co-
efficients. The algebraic structure that a matrix represents, depends on
its combination of vectors and covectors. Accordingly, the transformation
property of a matrix depends on its type of combination as well. For
instance, a matrix could represent a linear transformation or a metric.
Or, in other words, a square of numbers does not have a mathematical
meaning, instead it has to defined what it means.

Mostly, in teaching this subject, the algebraic structure is solely rep-
resented by coefficients and their upper and lower indices. Here, instead,
we want to represent the algebraic structure by the use of bra and ket
vectors. A linear transformation will then be given by a combination of
a ket and a bra vector, a metric by a combination of two ket vectors.
This approach, for instance, might help to clarify situations where the
convention of upper and lower indices to represent the algebraic structure
is given up, at least implicitly, in favour of the row times column matrix
multiplication convention, as when dealing with the transpose of a matrix.

When writing down expressions with explicit upper and lower indices,
it is important to remember, that they represent explicit sums. Therefore,
the order of the terms is irrelevant. This kind of expressions are not matrix
multiplications, but just sums of numbers.

2 Vector Spaces

A vector is given by the product of coefficients and a ket symbol, as

|x〉 = x
i|ei〉, (3)

where
|ei〉 (4)

represent basis vectors. |x〉 is an element of the vector space and given
by the explicitly invariant expression on the right hand side, with its sum
over one upper and one lower index.

A covector is given by the product of coefficients and a bra symbol, as

〈x| = xi〈ei|, (5)

where
〈ei| (6)

represent basis covectors.
The coefficients xi constitue a vector space as well. Accordingly, the

coefficients of the covectors xi form the corresponding covector space.
Covectors map vectors to real numbers. We define an orthonormal

basis of the vector and covector space as

〈ei|
(

|ej〉
)

= 〈ei|ej〉 = δ
i
j , (7)

where the first expression emphasizes that covectors are maps and where
we left out the brakets in the second expression for convenience. The δ

2



symbol just represents numbers, 1 for i = j and 0 for i 6= j. Therefore, it
doesn’t matter where we put the indices. If δ were to represent a trivial
linear transformation instead, the postition of the indices would matter.

Later we will translate vectors and covectors into each other with the
help of a metric. But first, we will take a look at linear trnsformations.

2.1 Linear Transformations

A linear transformation A is a map between vector spaces and is given by

|x̂〉 = A|x〉 =
(

a
i
j |ei〉〈ej |

)

|x〉. (8)

Hence,
x̂
i|ei〉 = |x̂〉 = a

i
j |ei〉〈ej |x〉 = a

i
j |ei〉〈ej|xk|ek〉 (9)

= a
i
j |ei〉xk〈ej |ek〉 = a

i
jx

j |ei〉. (10)

Therefore
x̂
i = a

i
jx

j
. (11)

The horizontal displacements of the indices of aij are necessary to show
that the matrix represents a map between vetor spaces. A map between
covector spaces takes the following form,

〈x̂| = A〈x| =
(

a
j
i 〈ei|

)

〈x|ej〉 (12)

with
x̂i = a

j
i xj . (13)

Let’s now define a map B, which linearly transforms a system of basis
vectors to a new system of basis vectors. We will write this transformation
backwards for reasons that will become clear later.

|ej〉 = |êi〉〈êi|ej〉 = b
i
j |êi〉, (14)

with the trivial transformation

I = δ
i
j |ei〉〈ej| = |ei〉〈ei|. (15)

With B−1 defined to be the inverse of B, it follows

(b−1)ji|ej〉 = |êi〉. (16)

A covector basis changes likes this:

〈êi| = 〈êi|ej〉〈ej | = b
i
j〈ej | (17)

and
(b−1)ij〈êi| = 〈ej | (18)

The linear map A transforms under the above change of basis as fol-
lows:

â
i
j |êi〉〈êj | = â

i
j(b

−1)ki|ek〉bjl〈e
l| (19)

= (b−1)kiâ
i
jb

j

l|ek〉〈e
l| = a

k
l|ek〉〈el|. (20)

Hence
a
k
l = (b−1)ki â

i
j b

j

l, (21)

or in matrix form
A = B

−1
ÂB. (22)
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2.2 The Metric

A metric defines the length, or more general, angles between vectors.
Hence it has to represent an algebraic structure that contracts 2 vectors.
A metric G can therefore defined to be:

G = gij 〈ei|〈ej |. (23)

The length of a vector x is then given by

gij 〈ei|〈ej ||x〉|x〉 = gij 〈ei|〈ej |xk
x
l|ek〉|el〉 = (24)

gijx
k
x
l〈ei|ek〉〈ej |el〉 = gijx

i
x
j = x

i
gijx

j
. (25)

Under a transformation of the basis vectors, the metric changes as follows:

G = ĝij 〈êi|〈êj | = b
i
kĝijb

j

l〈e
k|〈el| = gkl〈ek|〈el|. (26)

Hence
gkl = b

i
kĝijb

j

l, (27)

and in matrix notation
G = B

T
ĜB. (28)

The use of the matrix transpose can lead to confusion. The transpose
of a matrix

M = m
i
j |ei〉〈ej | (29)

is given by
M

T = N = n
i
j |ei〉〈ej | (30)

with
n
j
i = m

i
j . (31)

That means, that the transpose of a matrix is still a linear map between
vector spaces. The matrix notation seems to suggest that instead

n
j
i = m

i
j , (32)

as required by the row times column matrix mulitplication convention. If
we give up that the position of the indices resemble the algebraic structure,
we can swap the coefficients horizontally for the purpose of row times
column multiplication. But, since this is bound to lead to confusion, this
is only used implicitly for the matrix notation and never explicitly.

Let’s look again at the contraction of two vectors with the metric:

gij 〈ei|〈ej | |x〉|y〉 = gij 〈ei|x〉〈ej |y〉 = (33)

=
[

x
i
gij 〈ej |

] [

|y〉
]

. (34)

We know that the result of this computation is a scalar. The term in the
first braket is therefore a dual vector, generated from the vector x. We
can write this as

=
[

xj〈ej |
] [

|y〉
]

, (35)

with
xj = x

i
gij . (36)

4



xj is the coefficient covector to xj . The metric therefore translates be-
tween vectors and covectors. Therefore

〈x|y〉 = xiy
i
. (37)

We could have chosen instead

gij 〈ei|〈ej | |x〉|y〉 = gij 〈ei|x〉〈ej |y〉 (38)

=
[

gijy
j〈ei|

] [

|x〉
]

=
[

yi〈ei|
] [

|x〉
]

(39)

with
yi = gijy

j (40)

and therefore
〈y|x〉 = yix

i
. (41)

This shows that we can use the metric to translate between vectors and
covectors and that it is practically achieved, on the coefficient level, by
lowering indices.

〈x|y〉 = x
i
gijy

j = x
i
yi = xjy

j
. (42)

We can equally define a metric for the dual space, which allows to raise
indices, by

g
ij |ei〉|ej〉. (43)

With this we can contract two covectors to get

〈x|y〉 = xig
ij
yj = x

j
yj = xiy

i
. (44)

We can use this to raise or lower indices of linear transformations as well

gkia
i
j = akj , (45)

or
a
i
jg

jk = a
ik
. (46)

We emphasize here again, that the order of the terms is irrelevant, since
the epressions constitute explicit sums over numbers. From this we can
rederive the above statements about swapping indices horizontally.

gkia
i
jg

jl = a
l

k . (47)

We found earlier that a linear map A transforms as

A = B
−1
ÂB (48)

and a martic G as
G = B

T
ĜB. (49)

Lowering the first index of the linear map A leads to

GA = B
T
ĜBB

−1
ÂB = B

T
ĜÂB (50)

Let’s assume that, for a give basis system, the linear map A is sym-
metric

A = A
T
. (51)
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After changing the basis, we find

Â
T = (BAB−1)T = (B−1)TAT

B
T = (B−1)TABT 6= Â (52)

Therefore, a linear map cannot be symmetric, since if it was symmetric
in a given basis, it wouldn’t be symmetric in another basis. Let’s do the
same analysis for GA, with

GA = (GA)T = A
T
G

T
. (53)

After changing the basis, we find

(ĜÂ)T = (BGABT )T = BGAB
T = ĜÂ. (54)

If GA was symmetric in one basis system, it would be in any. Hence
it makes sense only to talk about symmetric matrices for matrices with
two lower (or two upper) indices. This will be important, for instance,
when we talk about symmetries of the generators of the Lorentz algebra.
This symmetries have to be analyzed for generators with two lower (or
two upper) indices, and not for generators representing the linear Lorentz
map (with one upper and one lower index).

Let’s assume now, that the linear map A leaves the contraction of
vectors unchanged, i.e.

〈x|y〉 = 〈x̂|ŷ〉. (55)

It then follows

〈x̂|ŷ〉 = gab〈ea|〈eb|acdxd|ec〉aefxf |ee〉 (56)

= a
a
dgaba

b
fx

d
x
f
. (57)

Therefore,
a
a
dgaba

b
f = gdf . (58)

Let’s multiply this equation with A−1 from the right

ahd = abda
b
f (a

−1)fh = gdf (a
−1)fh = (a−1)dh. (59)

That means, that if A leaves the the angles between vectors unchanged,
GA is an orthogonal matrix. Again, the characteristic of a matrix, here
the orthogonality, is given for the matrix version with two lower indices.

3 Special Relativity

In special relativity, the metric has the well known, non trivial structure,
defined by

η = ηij 〈ei|〈ej | (60)

with
ηij = 0, i 6= j (61)

and
η00 = 1, η11 = −1, η22 = −1, η33 = −1, (62)

where we used the symbol η instead of g to indicate that we are using an
explicitly given metric now.
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3.1 Lorentz Transformation

The Lorentz transformation L relates different observers to each other. It
therefore translates between inertial systems. It is restricted to inertial
systems with a common origin, since

L|0〉 = |0〉. (63)

The Lorentz transformation is defined to leave angles between and lengths
of vectors invariant. With the above findings, L is defined such that ηL
is orthogonal

(ηL)T = (ηL)−1
. (64)

3.2 Lie Algebra

The Lorentz transformation contains a subgroup consisting of rotations
in space-time. Since roatations are continously linked to the identity ele-
ment, the Lorentz transformation can be represented by a Lie Algebra

L = l
i
j |ei〉〈ej | = e

ωi
j |ei〉〈ej | (65)

≈ (1 + ω)ij |ei〉〈ej | = (δij + ω
i
j )|ei〉〈ej | (66)

With
l
a
dηabl

b
f = ηdf , (67)

it follows
ηdf ≈ (δad + ω

a
d)ηab(δ

b
f + ω

b
f ) (68)

= (δad + ω
a
d)(ηaf + ωaf ) (69)

≈ ηdf + ωdf + ωfd. (70)

Therefore
ωdf = −ωfd. (71)

As explained above, the symmetry considerations relate to matrices with
two lower indices and not to the linear transformation directly. The gen-
erators relate to the linear Lorentz transformation as

ω
d
f = η

de
ωef . (72)

ωdf has, because of the symmetry, six degrees of freedom. This six degrees
of freedom related to 3 rotations and 3 boosts.

The Lorentz group L and ω are related through

L
d
f = exp(ωd

f ). (73)

A group is determined by the way it combines two elements via mul-
tiplications into one. This is most apparent for finite groups, which can
be defined by a multiplication table alone. Hence, if we know how to
multiply any two elements, we know the group. A group is therefore the
abstract structure of the multiplication and anything that follows this
type of multiplication is a group representation.
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The question that naturally arise is: Given the basis matrices ω only,
how could we work out the group multiplication of the Lorentz group.
The answer is given by the the Baker–Campbell–Hausdorff formula

e
X
e
Y = e

Z
, (74)

with

Z = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] + . . . (75)

and
[X,Y ] = XY − Y X. (76)

This means, that to work out the group structure, we need to know the
commutators of the Lie Algebra. Or in other words, two Lie algebras with
the same commutator structure lead to isomorphic groups.

If we define the basis matrices to be

fij = 〈ei|〈ej | − 〈ej |〈ei| (77)

with j > i. Because of the definition of f ,

f
i
j 6= η

il
flj . (78)

Since we cannot use symmetry arguments for the linear map, we have to
argue explicitly. Due to the metric, each

|ei〉〈ej | (79)

with i ≥ 2 picks up a minus sign. Hence,

f
i
j = (fm)ij = −|ei〉〈ej |+ |ej〉〈ei|, (80)

for i ≥ 2 and j > i, and

f
1
j = (fp)

1
j = |e1〉〈ej |+ |ej〉〈e1|, (81)

j > 1.
Let’s work out the commutators of the basis matrics fm and fp. Let’s

take, for instance,
[

(fm)23, (fm)24
]

= (82)

= (−|e2〉〈e3|+ |e3〉〈e2|) (−|e2〉〈e4|+ |e4〉〈e2|) (83)

−
(

(−|e2〉〈e4|+ |e4〉〈e2|) (−|e2〉〈e3|+ |e3〉〈e2|)
)

(84)

= −|e3〉〈e4|+ |e4〉〈e3| = (fm)34. (85)

Similarly,
[

(fp)
1
3, (fp)

1
4

]

= (86)

= (|e1〉〈e3|+ |e3〉〈e1|) (|e1〉〈e4|+ |e4〉〈e1|) (87)

−
(

(|e1〉〈e4|+ |e4〉〈e1|) (|e1〉〈e3|+ |e3〉〈e1|)
)

(88)

= |e3〉〈e4| − |e4〉〈e3| = −(fm)34. (89)
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Let’s take a look at the three dimensional rotation group, with a trivial
metric

G = δij 〈ei|〈ej | (90)

The orthogonal map is defined through

O|x〉 = |x̂〉 (91)

with
〈x|y〉 = 〈x̂|ŷ〉. (92)

Hence
〈x̂|ŷ〉 = δab〈ea|〈eb|ocdxd|ec〉oefxf |ee〉 (93)

= o
a
dδabo

b
fx

d
x
f
. (94)

It follows
o
a
dδabo

b
f = δdf . (95)

The we find for an infinitesimal transformation

(δad + ω
a
d)δab(δ

b
f + ω

b
f ) (96)

= (δbd + ωbd)(δ
b
f + ω

b
f ) (97)

= δfd + ωfd + ωdf = δdf . (98)

Hence
ωfd = −ωdf . (99)

Due to the symmetry, the Lie algebra has three degrees of freedom. Let’s
define the basis as

fij = 〈ei|〈ej | − 〈ej |〈ei|. (100)

Since the metric is trivial

f
i
j = |ei〉〈ej | − |ej〉〈ei|. (101)

This is the same basis as for the fm for the Lorentz Lie algebra. Hence
the commutators will be identical too. Therefore the fm matrices of the
Lorentz Lie algebra correspond to rotations in space.

Let’s rename the basis matrices and summarize the commutators,

J1 = f
3
4 , J2 = −f2

4 , J3 = f
2
3 (102)

and
K1 = f

1
2 , K2 = f

1
3 , K3 = f

1
4 . (103)

Then we find

[J1, J2] = J3, [J2, J3] = J1, [J3, J1] = J2, (104)

[K1,K2] = −J3, [K2,K3] = −J1, [K3,K1] = −J2, (105)

[J1,K2] = K3, [J2,K3] = K1, [J3,K1] = K2, (106)

[J1,K3] = −K2, [J2, K1] = −K3, [J3,K2] = −K1, (107)

If we change the basis yet again, this time to

A
+

i = Ji + iKi, A
−

i = Ji − iKi. (108)
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The commutators read then

[A+

1, A
+

2] = A
+

3, [A+

2, A
+

3] = A
+

1, [A+

3, A
+

1] = A
+

2, (109)

[A−

1, A
−

2] = A
−

3, [A−

2, A
−

3] = A
−

1, [A−

3, A
−

1] = A
−

2, (110)

and
[A+

1, A
−

2] = 0, [A+

2, A
−

3] = 0, [A+

3, A
−

1] = 0. (111)

4 Quantum states

A quantum state is described by a wave function over space-time. Let’s
see how we can generate a function like this in the bra and ket notation.
Let’s start with a scalar function. A scalar can be computed with the dot
product of two vectors. Let’s therefore define

〈x|y〉 (112)

at every spacetime point x. If we chose now y at every space-time point
such that the dot product equals the value of the function we want to
generate, then we have to write more precisely

〈x|y(x)〉. (113)

We’ll rephrase this as follows

|ψ〉 = |y(x)〉 (114)

and
ψ(x) = 〈x|y(x)〉 = 〈x|ψ〉. (115)

We can work out how this function changes under a Lorentz transforma-
tion. We can use its bracket definition to do so. A Lorentz transformation
is defined to leave the dot product unchanged, hence

〈x̂|ŷ(x̂)〉 = 〈x|y(x)〉, (116)

or
ψ̂(x̂) = ψ(x) (117)

or
ψ̂(x) = ψ(L−1

x). (118)

In this notation, the state |ψ〉 represents a vector at each space-time point,
which will form a dot product to create a scalar. The lorentz transforma-
tion transforms this vectors for each space-time point and like this induces
a transformation on the state space

ψ → ψ̂ (119)

or
ψ̂ = U(ψ). (120)

The state vectors form a new vector space. A basis system can be thought
of as the direct sum of a coordinate system at every space-time point. We
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will just enumerate this basis vectors, so that we can write again U is then
statisfies

|ψ〉 = ψ
i|ei〉, (121)

only that now, we have an infinite sum. U is then give by

ψ̂
i = u

i
jψ

j (122)

Since the dot product at each space-time point leaves the dot product un-
changed and since the Lorentz transformation induced the map U , U will
leave the dot product, defined in its vector space, invariant as well. Since
we are now dealing with quantum states, we have to allow for multiplica-
tions with complex numbers as well. Hence a transition between vectors
and covectors will include a complex conjugation, to keep the result of the
dot product real. Therefore,

ηilu
l
j = uij (123)

is unitary (since, as described above, symmetries don’t apply to linear
maps, as they are not independent of the choice of basis).

For a vector field, we just have to take a vector at each space-time
point

|y(x)〉 = |ψ〉. (124)

We can still call this |ψ〉, or the wave function ψ(x), like it is mostly done
for the Dirac field. Under a Lorentz transformation, this transforms as

|ŷ(x̂)〉 = |ŷ(Lx)〉 = L|y(Lx)〉 (125)

or
|ŷ(x)〉 = L|y(L−1

x)〉 (126)

Let’s look an intuitive explanation for this transformation. y is a vector
that sits at the end of vector x. If we write

|z〉 = |x〉+ |y〉, (127)

then both, |z〉 and |x〉 start at the origin of the coordinate system and
therefore clearly transform as L|z〉 and L|x〉. Therefore,

|z〉 − |x〉 = |y〉, (128)

L(|z〉 − |x〉) = L|y〉, (129)

L|z〉 = L|x〉+ L|y〉, (130)

Hence, both |x〉 and |y〉 have to undergo a Lorentz transformation. This is
the reason why we find two Lorentz transformations in the transformation
law of vector fields.

If we were to describe an elementary particle with this, then the ex-
ternal degrees of freedom would be its position and location. Everything
else is a internal. Hence, if we used a vector field to describe a particle,
the vector would describe an internal degree of freedom. The internal
degrees of freedom should be independent of the observer and invariant
under Lorentz transformations. Let’s put a particle, described by a vector
field, at the origin of a coordinate system, which is therefore equal to zero
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everywhere, but at the origin. Therefore we only have to consider the
vector at the origin

|ψ(0)〉. (131)

This transforms as
| ˆψ(0)〉 = |ψ(0)〉, (132)

since L(0) = 0. The remaining transformation describes internal degrees
of freedom. We postulate that states that describe elementary particles
to be eigenstates of L. Hence, we have to find a wave function such that

L|ψ(0)〉 = s|ψ(0)〉, (133)

where L has to only be applied at the 4 vector at the origin. We al-
ready showed before, that for L, a basis can be chosen, so that L acts as
su(2)

⊕

su(2), where the direct sum
⊕

refers to the fact, that we have
two mutually exclusive subspaces. We therefore found a group represen-
tation of the form ( 1

2
, 0)

⊕

(0, 1

2
). Therefore, a vector particle corresponds

to a Dirac field, staisfying the Dirac equation.
Since the Lorentz group splits up in 2 invariant subspaces, we can place

vectors in multiples of 2 at every space-time point, such that the 2d vector
space is left invariant by the Lorentz transformation. Let’s therefore write
for a vector field

|x〉|s〉. (134)

This can be seen as the vector |s〉 sitting at the end of each |x〉. |s〉 can
have any diemension a representation of su(2) can act on. Or it could be
a tensor product of states as well, for instance

|x〉|s1〉|s2〉. (135)

We have to rewrite the transformation of such a vector field, since it is
now a transformation induced by the Lorentz transformation acting on
|s〉,

|ŷ(x̂)〉 = L|y(Lx)〉 → |x̂〉|ŝ〉 = L|x〉U |s〉. (136)

L and U describe the same transformation, but couple to different vector
spaces.

For this analysis of the inner symmetries we assumed the particle to
be at rest at the origin of the coordinate system. This is not possible for
massless particles. A state, of length 0, that describes a massless particle,
moving in the z direction can be given

|p〉 = k|e1〉+ k|e4〉. (137)

We define again inner symmetries to be described by all Lorentz transfor-
mations that leave this state invariant. For this to be true, the generators
of the Lorentz group have to vanish when acting on the state. Let’s look
at all generator’s action on the state:

J1|p〉 = −|e3〉 J2|p〉 = |e2〉 J3|p〉 = 0 (138)

K1|p〉 = |e2〉 K2|p〉 = |e3〉 K3|p〉 = |e1〉+ |e4〉. (139)
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Therefore, the generators we are looking for are given by

J3, J1 +K2, J2 −K1. (140)

Let’s define
P1 = J1 +K2, P2 = J2 −K1, (141)

and look at the commutators

[J3, P1] = P2, [J3, P2] = −P1, [P1, P2] = 0. (142)

5 Representation of SO(3)

Since the bra and ket already indicate whether we are dealing with a
vector or a covector, we will make notation simpler by replacing

|ei〉 → |i〉, 〈ei| → 〈i|. (143)

SO(3) is the rotation group in 3 dimension, that we encountered already
as a subgroup of the Lorentz group. Its generators read

J1 = |2〉〈3| − |3〉〈2|, J2 = −|1〉〈3|+ |3〉〈1|, J3 = |1〉〈2| − |2〉〈1|. (144)

The commutation rules are given by

[J1, J2] = J3, [J2, J3] = J1, [J3, J1] = J2, (145)

where |i〉 and 〈i| are the basis vectors and covectors, respectively. Since the
commutators do not commute, they can’t be diagonalized simultaniously.
Let’s therefore diagonalize J3. Since





1 0 0
0 0 0
0 0 −1



 =





−i 1 0

0 0
√
2i

i 1 0









0 i 0
−i 0 0
0 0 0









i
2

0 − i
2

1

2
0 1

2

0 − i
√

2
0





(146)






0 − i
√

2
0

− i
√

2
0 i

√

2

0 − i
√

2
0






=





−i 1 0

0 0
√
2i

i 1 0









0 0 −i
0 0 0
i 0 0









i
2

0 − i
2

1

2
0 1

2

0 − i
√

2
0





(147)






0 1
√

2
0

1
√

2
0 1

√

2

0 1
√

2
0






=





−i 1 0

0 0
√
2i

i 1 0









0 0 0
0 0 i

0 −i 0









i
2

0 − i
2

1

2
0 1

2

0 − i
√

2
0





(148)
Since we want real eigenvalues, we redefine the generators as

Li = iJi. (149)

The new basis vectors are simply the columns of





i
2

0 − i
2

1

2
0 1

2

0 − i
√

2
0



 . (150)
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The matrix entry (3, 2), given by − i
√

2
, is chosen, so that the ladder

operators look nice and symmetric. Any other factor would be possible.
We find,

L3(i|1〉+ |2〉) = i|1〉 + |2〉, (151)

L3(−i|1〉 + |2〉) = i|1〉 − |2〉 = −(i|1〉 + |2〉), (152)

L3(−i|3〉) = 0, (153)

and
|1̂〉 = i|1〉 + |2〉, |2̂〉 = −i|3〉. |3̂〉 = −i|1〉+ |2〉. (154)

We can define ladder operators as

L+ = (L1 − iL2) =
√
2





0 1 0
0 0 1
0 0 0



 (155)

L− = (L1 + iL2) =
√
2





0 0 0
1 0 0
0 1 0



 (156)

and therefore,

L+|3̂〉 = |2̂〉 L+|2̂〉 = |1̂〉 L+|1̂〉 = 0, (157)

L−|1̂〉 = |2̂〉 L−|2̂〉 = |3̂〉 L−|3̂〉 = 0. (158)

Let’s define J2 as
J
2 = J

2
1 + J

2
2 + J

2
3 . (159)

Therefore,

J
2 =





1

2
0 1

2

0 1 0
1

2
0 1

2



+





1

2
0 − 1

2

0 1 0
− 1

2
0 1

2



+





1 0 0
0 0 0
0 0 1



 (160)

=





2 0 0
0 2 0
0 0 2



 =





j(j + 1) 0 0
0 j(j + 1) 0
0 0 j(j + 1),



 (161)

with j = 1.
The fact that we had to introduce complex numbers to get to real

eigenvalues, indicates that there exists a more fundamental algebra, which
is directly defined within complex numbers.

6 Representations of su(2)

An su(2) matrix leaves a complex dot product invariant. For transforma-
tions between complex vector and covector spaces, the coeffiecient undergo
conjugation. Hence, with

U |x〉 = |x̂〉 (162)

and
〈x|y〉 = 〈x̂|ŷ〉, (163)

it follows,
〈x̂|ŷ〉 = δab〈ea|〈eb|uc

dx
d|ec〉ue

fx
f |ee〉 (164)
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= o
a
dδabo

b
fx

d
x
f
. (165)

It follows
o
a
dδabo

b
f = δdf . (166)
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