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Abstract: We show that the electrostatic potential of an atomic nucleus ”seen” by a fast charged projectile at short
distances is quantum mechanically smeared due to nucleus motion around the atomic center of inertia. For
example, the size of the ”positive charge cloud” in the Hydrogen ground state is much larger than the proper
proton size. For target atoms in excited initial states, the effect is even larger. The elastic scattering at large
angles is generally weaker than the Rutherford scattering since the effective potential at short distances
is softer than the Colombian one due to a natural ”cutoff”. In addition, the large-angle scattering leads to
target atom excitations due to pushing the nucleus (⇒ inelastic processes). The Rutherford cross section is
in fact inclusive rather than elastic. These results are analogous to those from QED. Non-relativistic atomic
calculations are presented. The difference and the value of these calculations arise from nonperturbatively
(exact) nucleus ”dressing” that immediately leads to correct physical results and to significant technical
simplifications. In these respects a nucleus bound in an atom is a simple but rather realistic model of a
”dressed” charge in the QFT. This idea is briefly demonstrated on a real electron model (electronium) which
is free from infinities.
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1. Introduction

This paper resolves the old problem of self-action of ele-mentary particles known from early Quantum Electrody-namics times. We show that the infinities in calculationsappear not because of “pointlikeness” of the electron butmostly due to a very bad initial approximation used forinteracting particles. The essence of the problem can bedemonstrated in a simple atomic calculation. Then we ex-plain how the correct theory of interacting particles can
∗E-mail: vladimir.kalitvianski@wanadoo.fr

be formulated without self action and therefore withoutinfinities related to this concept.
Sometimes one can read that it was hoped that quantummechanics – a theory of wave functions – would some-how cure the problem related to the pointlike nature ofthe electron. The result, however, was disappointing1. In-deed, the self-interaction in QED remains, infinite cor-rections persist, and renormalization ideology leads to arather bizarre notion of bare pointlike particles with infi-nite physical parameters.
1 J. Zinn-Justin, http://ipht.cea.fr/articles/t98/118/ (1999)
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The real particles are “dressed” or “renormalized”. Thebare particle perturbative “dressing” is awkwardly repre-sented as a “vacuum polarization” effect due to creationof bare virtual particles which modifies the infinite, initialbare-particle potential at long distances. As a qualitativeexplanation of this “phenomenon”, the Coulomb potentialmodification of the atomic nucleus at large distances dueto electron screening is sometimes presented2:“To draw an analogy in non relativistic quantum mechanicsthink of nuclei as bare atoms, electrons as virtual parti-cles, atoms as dressed nuclei and the residual interac-tion between atoms, computed in the Born-Oppenheimerapproximation, as the dressed interaction. Thus, for Ar-gon atoms, the dressed interaction is something close toa Lennard-Jones potential, while the bare interaction isCoulomb repulsion. This is the situation physicists had inmind when they invented the notions of bare and dressedparticles.”It would be a good analogy if the standard QFT cal-culations did not involve fictitious particles with infiniteparameters (i.e. if the “bare” particles existed). But, aslong as the standard QFT calculations involve infinitiesand renormalisations, the dressing physics remains quitevague and looks more like hand waving, even with themodern Wilson’s approach.On the other hand, there is a much more realistic (butpractically unknown and thus unexploited) atomic analogyof particle dressing than that cited above. In this articlewe would like to bring it to your attention. Implementationof this idea in QED and in QFT removes the problems ofappearing infinities.
1.1. Quantum mechanical charge smearing

Everybody knows that the atomic electrons form a “neg-ative charge cloud” within an atom. Few, however, knowthat a similar “cloud” is formed by the atomic nucleusaround the atomic center of inertia. The “positive chargecloud” is just smaller in size – it is rescaled to the dis-tances r 6 a0(me/MA), but it is of exactly the same na-ture. Strictly speaking, a fast charged projectile capableof approaching the atomic center never meets the strongCoulomb repulsion there if it is scattered elastically. Thenucleus coupling to the light atomic electrons naturallymodifies the nucleus electrostatic potential at short dis-
tances r → 0 which means its Coulomb singularity ac-quires a natural “cutoff”. It is described in the frame of
2 A. Neumaier, Theoretical Physics FAQ,
http://www.mat.univie.ac.at/∼neum/physics-faq.txt, sec-
tion S3a (2004)

usual non-relativistic quantum mechanics and it is a realphysical (observable) phenomenon. This radically correctsour understanding of “elementary” particle observation ina very well known example – the Rutherford scattering.To bring it to light, we consider the simplest non-relativistic scattering of a fast (v ≈ 10v0 ≈ 0.07c), heavystructureless charge Z1 with mass M1 (a proton, for exam-ple) from a light atom with the nucleus charge ZA. Theprojectile energy is then sufficient to test the atomic elec-trostatic potential at all short distances. With such ve-locities, no bound states between the projectile and thetarget may be formed, so we can safely speak of asymp-totically “free” in- and out- atomic and projectile states(weak and finite-range interaction). This is a typical anda very old scattering problem in the Atomic Physics thatcan be considered quite accurately in the first Born ap-proximation.Usually it goes without saying that the nucleus stays inthe atomic center of inertia (CI) and for large scatter-ing angles the elastic cross section coincides with theRutherford one [1]. At first sight this appears quite jus-tified since the atomic electrons cannot repulse a heavyprojectile backward; instead the Coulomb potential of thepointlike heavy nucleus seemingly comes into play. Un-fortunately this explanation is inexact. The atomic CI isresponsible for moving the atom as a whole and cannotdescribe the true effects of projectile-nucleus interaction,excitation of the atom when the transferred momentum issufficiently big, for example. Assigning the Coulomb po-tential to the atomic CI also excludes the possibility ofsmearing the nucleus potential for an external observer.At the same time, considering the nucleus motion in theatom does not lead to any complications, at least in thescattering problem, but such a consideration is much morecorrect from physical point of view. It gives correct “sec-ond” (positive charge) atomic form factors that describeobvious and important physical effects. Now we will workout this simple problem in some details and point out closeanalogies with QED.
2. Second atomic form factors
fn′n (q)
Let ra be the electron coordinates relative to the atomicnucleus. The total atomic wave function is the productof the atomic CI plane wave and a wave function of therelative motion: ΨA ∝ exp (iPCI · RCI/~) ψn(ra). And let
r be the projectile coordinate (particle 1) relative to theatomic CI: r = r1 − RCI . Then the microscopic potentialof electrostatic interaction between the projectile and the
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atom is expressed as follows:
V̂ = Z1e2
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The differential cross section, calculated in the first Bornapproximation at the center of masses of the projectile andthe target atom, is given by the formula [2]:
dσn′n p′

p (θ) = 4m2Z 21 e4(~q)4 p′
p

∣∣∣ZA · fn′n (q) − Fn′
n (q)∣∣∣2 dΩ. (2)

This looks like the textbook formula but differs by thepresence of the “second” or “positive charge” atomic form-factor fn′n (q) which stands at the nucleus charge ZA:
fn′n (q) = ∫

ψ∗n′ (ra)ψn(ra) exp(i me

MA
q
∑
a

ra

)
dτ. (3)

The second atomic form-factor is the effect of the nucleusbinding to the atomic electrons. For elastic scattering(n′ = n) it describes the “positive charge cloud” in theatom, while for n′ 6= n it gives the amplitude of atom ex-citing due to shaking the nucleus. There is a full analogywith the negative charge (electron) “cloud” and atom exci-tation amplitudes described by the first atomic form factor
Fn′
n . The only difference is that the first and second atomicform factors “work” at quite different angles (or values oftransferred momentum ~q, or impact parameter regions).Our “first” or “negative charge” atomic form factor Fn′

n :
Fn′
n (q) = ∫
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)

exp(i me

MA
q
∑
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)
dτ (4)

does not practically differ from the textbook one; it “works”at very small angles, and we will not need it anyway. Weuse the following (standard) notations for the center ofmass variables and the atomic notation [1]:
m = M1 · MA

M1 + MA
, p = mv; ~q = p′ − p,

p′ = √
p2 − 2m(En′ − En), (5)

~q = √
p′2 + p2 − 2pp′ cosθ,

ψn(ra) ≡ ψn(r1, r2, ..., rZA ),
dτ ≡ d3r1 · d3r2 · ... · d3rZA ,
a0 = ~2/mee2; v0 = e2/~.

2.1. Elastic scattering
Let us take a light atom in a quasi-stable initial state
ψn(ra) as a target. As can be seen from (3), the secondatomic form-factor becomes essentially different from unityfor elastic processes, |fnn (q)| < 1, when the scatteringangle approaches or exceeds the value:

θn = 2 arcsin{ v02v a0
an

(1 + MA

M1 )} ; n > 0. (6)
Then the elastic cross section becomes |fnn | −2 timessmaller than the Rutherford one.Hereafter we will focus on the θ region θn 6 θ 6 π andwill refer to it as to “backward” scattering, regardless ofthe numerical values actually taken by θ. (In fact, scat-tering to this angle range may be called “deep inelastic
atomic scattering”, in a full analogy with the deep inelas-tic scattering from hadrons. It might be used to study
atomic structure at short distances; see the next sectionfor more details). In this angle region the first atomic formfactor Fn

n (q) (due to the projectile-electron interaction) isnegligible compared to the term ZAfnn (q) (determined withthe projectile-nucleus interaction) so the projectile “feels”the atomic electron presence via the second atomic formfactor rather than via the direct projectile-electron inter-action. The physics is simple here: the electrons in atommake the nucleus move around the atomic CI and thissmears the positive charge density via quantum mechani-
cal averaging (7). It is a typical “vacuum field fluctuation”effect. As a result, the atom elastically repulses a positiveprojectile (or attracts a negative one) much weakly thanthe pointlike Coulomb center: (in the first Born approx-imation) the effective atomic electrostatic potential Un(r)“seen” with the projectile at short distances is equal to:

Un(r) = ∫
ψ∗n(ra) V̂ (r, ra)ψn(ra)dτ. (7)

It does not grow to infinity as 1/r but remains finite when
r → 0. This effective potential may be considered as a“microscopic” one acting between a fast projectile and anon-elementary target (though this is useful only in theelastic backward scattering description):

dσnn pp(q) = m24π2~4
∣∣∣∣∫ Un (r) e−iqrd3r

∣∣∣∣2 dΩ. (8)
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Figure 1. The effective deuterium potential U0(r) “seen” by a fast
proton as a function of distance to the atomic CI. At short
distances 0 6 r 6 (me/MA)a0 it is essentially “softer” than
the Coulomb one.

To simplify numerical illustration and to avoid considera-tion of identical particles we present a particular case ofproton scattering from deuterium. The proton velocity ischosen to be v = 10v0. Then θn ≈ 0.3/(1 + n)2; n > 0and f00 (q(θ)) = [1 + (100/9) sin2 (θ/2)] −2.For proton-deuterium collisions the effective atomic poten-tial (7) is shown in Fig. 1. The potential is compared to theCoulomb curve e2/r (dot-dashed line) and to a simple an-alytical approximation U0(r)appr. = e2/√r2 + (me/MA)2 a20(dot line). The distance (me/MA)a0 of the Coulomb “sin-gularity” effectively “cutting off” appears here quite natu-rally: thanks to taking into account the electron presence
exactly rather than perturbatively in (1), (7) and (8).An attempt to fulfil a “perturbative” calculation ofthis amplitude, for example, with (U0)appr. ∝ r−1 −(me/MA)2 a20r−3/2+ ... in (8) leads to corrections which aredivergent at small distances, for example, ∫0 (r2dr) /r3 =(ln r|r→0) → ∞. As we can conclude from Fig. 1, theCoulomb potential 1/r is “infinitely far” from the exact ef-fective potential U0(r) at short distances. The other Tay-lor terms are also distant there – the series in powers of(me/MA) (a0/r) diverges when r → 0. The correspondingintegrals in (8) diverge too.Of course, in these divergences there is no physics such as“vacuum polarization” due to “virtual” electron contribu-tions. Rather, there is simply a very bad initial approxima-tion of U0(r) (i.e. ∝ 1/r) and therefore divergent iterativeterms to “correct” it. Now it is clear why trying to cal-culate the smearing effects “perturbatively”, i.e., by using1/r as the initial approximation of interaction potential isnot a good idea.In the proton-deuterium example the maximum value of
U0(r) is much smaller than the initial projectile kineticenergy: U0(0) = (

e2/a0) (2mp/me
) = α22mp c2, mv2/2 =

(50/3) α22mp c2 ≈ 17 · U0(0), so the proton can approachand “pass through” the positive cloud without problem.This fact also validates the applicability of the first Bornapproximation. It is obvious that accounting for thehigher-order Born terms and spin cannot invalidate thesmearing physics outlined above because it is nearly ex-act.The positive charge cloud in an atom is rather similar tothe negative (electron) charge cloud. For the Hydrogenatom with a0 ≈ 0.53 × 10−10 m the positive cloud has asize of about 2 (me/Mp
)
a0 ≈ 5.8 × 10−14 m. It is muchsmaller than the atomic size 2a0 but is still bigger thanthe proper proton size (6 1.7 × 10−15 m) determined withthe Hofstadter’s form factor.The most important thing to note here is that even if theatomic nucleus and the projectile were structureless (justas in our simple calculation), their interaction potential(1) would be anyway effectively (quantum mechanically)cut off at small distances due to nucleus coupling to theatomic electrons (7). We have absolutely no need to seekor introduce any other (alien) mechanism of cutoff if weaccount for this one correctly (i.e., in the first turn).The textbooks, which neglect the term (me/MA)∑

a
ra inthe projectile-nucleus potential (1) (it is the distance fromthe atomic CI to the nucleus), erroneously substitute thenucleus coordinates with those of the atomic CI and givea physically wrong picture of elastic scattering: they ob-tain an unaltered Rutherford formula (no smearing effect isaccounted). Thus the atomic nucleus is taught to be point-like. QED similarly teaches that the electron is pointlike.The curve dσnn (θ) ∝ ∣∣∫ Un(r)e−iqr d3r∣∣2, considered figu-ratively hereafter as the state ψn “photograph”, is rather“pale” and distorted by the factor |fnn |2 in comparison withthe Rutherford “picture” dσRuth.(θ) ∝ [sin (θ/2)]−4. In par-ticular ∣∣f00 (q(π))∣∣2 ≈ 4.7 · 10−5 � 1. Let us note here thatin terms of transferred momentum ~q the positive-chargeelastic atomic form-factor serves as a natural regulariza-tion factor (momentum cutoff) in the momentum space sinceit makes the elastic (Coulomb) amplitude ∝ 1/ (~q)2 tendrapidly to zero at big transferred momenta.

2.2. Inelastic scattering

As one can see from (3), the second atomic form-factoris essentially different from zero for inelastic processes,
fn′n (q) 6= δnn′ , when the scattering angle approaches orexceeds the value θn (6). The physics is simple here –when the projectile transfers sufficiently big momentum tothe nucleus, the relative motion of the atomic electronsand the nucleus in atom gets perturbed. This gives riseto excited final atomic states that is quite natural. Thisis similar to the atom exciting by “shaking” the electrons
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Figure 2. θ-dependence of fn′0 for exciting the following |n′, l′, m′〉
states of deuterium by fast (v = 10 · v0) proton: 1 -|1, 0, 0〉 ,
2 -|1, 1, 0〉 , 3 -|2, 0, 0〉 , 4 -|2, 1, 0〉 . θ0 = 0.3.

under small angle scattering. With the nucleus it justhappens at much larger angles θ. In this angle region thefirst inelastic atomic form factor Fn′
n (q) is quite negligiblecompared to the term ZAfn

′
n (q).No excitation can be obtained though (fn′n (q)⇒ δnn′ = 0)if one substitutes (unnecessarily and erroneously) thenucleus coordinates with the coordinates of the atomicCI. If the projectile “hits” the atomic center of inertia(V (r) ∝ 1/r), then the atom is only accelerated as a whole(bodily) whatever momentum is transferred. That is phys-ically wrong.Fig. 2 represents some inelastic second atomic form-factors fn′0 . The corresponding inelastic cross sections areproportional to their squares.The excitation cross sections dσn′n (θn 6 θ 6 π) canbe measured experimentally. The projectile kinetic en-ergy at these velocities is about several MeV. In practicethere is no possibility of resolving the lost energy of suchrapid projectiles with precision of order 10 – 100 eV. It isnot even possible to prepare the incident beam with thatlevel of energy accuracy. That is why dealing only withscattered projectiles inevitably gives the inclusive crosssection.Another matter is observation of recoil atoms. The ex-cited atoms radiate. Atoms excited due to hitting electrons(described with Fn′

n under small angle scattering) receivesmall momenta and radiate the standard spectral lines.Target atoms excited due to shaking the nucleus (deter-mined with fn′n under large angle scattering) receive biggermomenta, therefore their spectral lines will be somewhatshifted due to the Doppler effect. Registering simultane-ously the scattered “backward” projectile and the shiftedspectral lines permits the observer to distinguish differentinelastic processes. Thus it is possible, in principle, tomeasure the elastic and different inelastic cross sections(2) separately. For that the target atoms should obviouslybe in a cold, low-density gas state in order not to dampsuch excitations by the inter-atomic collisions.

2.3. The inclusive cross section
If experimentally is counted only the number of scattered“backward” projectiles, without observing the target ex-citations (as Rutherford and many others did), what ismeasured is, in fact, the sum of elastic and inelastic crosssections. In this case the quantum mechanical result isvery close to the Rutherford formula:
dσincl
dΩ =∑

n′

dσn′n
p′
p

dΩ =∑
n′

4m2Z 21Z 2
Ae4(~q)4 p′

p

∣∣∣fn′n (q)∣∣∣2 (9a)
≈
(

Z1ZAe22mv2 sin2( θ2 )
)2 ; θ � me

m
v0
v
a0
an
. (9b)

This is easy to prove: as the energy losses on atomicexcitation En′ − En are always much smaller than thatspent on the whole atom acceleration, one can neglectthe dependence of p′ and q upon n′. Then the sum (9a)factorizes and reduces accurately enough to the productof the Rutherford cross section (9b) and unit due to thematrix sum rule [1]:
∑
n′

∣∣∣fn′n ∣∣∣2 = |f f+|nn = 1 . (10)
(To obtain exactly unity in (10), one needs to sum over
all final states n′, not just those permitted by the energyconservation law. We note, however, that the contributionof energetically forbidden final states (n′ � 1) is so smallin our case that the sum rule (10) approximately holds.)The physical sense of this result is simple: in calcula-tions of the number of fast particles scattered “backward”(observations made with photographic film, for example),one can consider the notion of a “free” nucleus with its(Coulomb in our case) potential as a target, but one should
never think that in such an experiment the target atomsdo not get excited! Our theoretical inclusive result corre-sponds to the factually inclusive experimental data. Thisis the only correct approach to the scattering description.
2.4. Atom, electron and neutron as projectiles
If the projectile is not elementary itself (for example, ifit is another atom), then the cross section (3) will simplycontain a product of two atomic form-factors, one per atom:
dσn′n

p′
p (θ)

dΩ = 4m2Z 21Z 22 e4(~q)4 p′
p

∣∣∣f1n1′
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(11)
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The fast electrons can also be used as projectiles. Fornon-relativistic fast electrons (with v ≈ 10v0) the Ruther-ford scattering attenuation will arise, according to (6), for
n > 10, i.e. for Rydberg target atoms. But when v → c,the velocity in (6) will be replaced with v/

√1− v2/c2.Therefore the effects outlined above for electron scatteringfrom the hydrogen ground state ψ0 may well be observedfor the incident electron energies > 3.5 MeV.If one neglects the weak dependence of p′ and q upon n′,then the cross section (2) breaks down into two factors– the Rutherford cross section (scattering from a “free”pointlike nucleus) and the probability ∣∣∣fn′n (q)∣∣∣2 of excitingthe atom following such a scattering event. This (condi-tional) probability coincides in the main with that foundby A. Migdal in 1939 in the problem of atom exciting withneutron [1]. In our approach this probability is obtainedimmediately and automatically in the first Born approx-imation if one uses the true nucleus coordinates ratherthan coordinates of atomic CI in the microscopic short-range neutron-nucleus potential:
V̂Neutron−Nucleus(rNeutron − rNucleus)

= V̂Neutron−Nucleus

(
r + me

MA

∑
a

ra

)

≈ Aδ
(

r + me

MA

∑
a

ra

)
, (12)

dσn′n p′
p = m24π~4 p

′

p |A|
2 · ∣∣∣fn′n (q)∣∣∣2 dΩ. (13)

The first factor including |A|2 (however inexact it is) de-fines in this approximation the cross section of transferringthe momentum ~q from the incident neutron to the atomicnucleus, while the factor ∣∣∣fn′n (q)∣∣∣2 represents the searchedprobability of exciting the atom assuming that such a mo-mentum transfer has happened (or not exciting for n′ = n).Therefore, the effects of the nucleus binding to the elec-trons are the same for any other kind of projectiles as soonas they transfer the same (big) momentum to the target.
3. Dressed nucleus
Non-relativistic quantum mechanics describing the elec-trons and nuclei as interacting de Broglie waves, givesquite understandable and measurable results in compar-ison with classical mechanics. The microscopic Coulombpotential in quantum mechanics acts between these waves,not between pointlike classical particles. De Broglie

waves may form observable stationary states ψn whichnever manifest any pointlike structure if one does not maketechnically unnecessary and physically erroneous “sim-plifications”. In particular, neither negative nor positivecharges in an atom are pointlike in the experiment and inthe correct theory. Summing up different events n → n′does not create, strictly speaking, an “objective” notion ofsome “free” pointlike particle.So far it has been fairly easy to accept corrections to theelastic scattering picture due to the nucleus motion in anatom. The real surprise comes when one considers an ex-cited atom as a target. Common sense tells us that themore weakly electrons are bound in the atom (they allare in very distant orbits, for example), the more weak istheir influence on the “backward” elastic scattering fromthe atom. It seems that here one may safely neglect theelectron-nucleus binding. In the limit of a highly excitedatom (a Rydberg atom, for example, with the electrons at“infinity”) the elastic cross section has to automaticallyreduce to the Rutherford one for all angles. Formulae (6)and (3) indicate, however, that this classical expectation iscompletely wrong: there is an even stronger attenuationof the elastically scattered backward flux from an excitedatom – the positive cloud size actually increases with in-creasing n: an ≈ a0(1 + n)2; n > 0. The higher thevalue of n, the wider the positive (quantum mechanical)cloud, and the smaller |fnn |2 at a given angle θ (Fig. 3).So when the target atom is “very big”, the “backward”elastic scattering vanishes at practically all finite angles
θ (n → ∞, θn → 0, |fnn | → 0) since the nucleus issmeared over the whole space. As the value of Un(0) de-creases with n → ∞, (Fig. 4) the validity of the first Bornapproximation increases. Therefore, one cannot preparea pointlike nucleus just by “keeping” the atomic electrons“far away” in the initial and the final target states. Thisconclusion may seem highly anti-intuitive but it is a strictquantum mechanical result. In fact, there is no paradoxhere as the elastic process is simply substituted with in-elastic ones: ∑

n′ 6=n
∣∣∣fn′n ∣∣∣2 → 1. One cannot and indeed

need not get rid of this effect in the correct theory. Onthe contrary, such a theory is much richer as it completelycorresponds to the physical reality.In actuality, any classical experimental result is the in-
clusive picture – the sum, like (9a), of compound quantummechanical targets which were “broken” differently in thecourse of “observing”.Without good resolution, “poor” experiments pile up differ-
ent events and produce an impression of observing some“objective” pointlike and elementary target (of course, withthe help of our simplified notions of it). Thus, experimen-tally the classical picture (pointlike particle) is literallycreated as a cinematographic illusion obtained by super-
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Figure 3. θ-dependence of fnn for fast (v = 10 · v0) proton scattering
from the following deuterium |n, l, m〉 states: 1 -|0, 0, 0〉 , 2
- |1, 0, 0〉 , 3 - |2, 0, 0〉 . θ0 ≈ 0.3; θ1 ≈ 0.08; θ2 ≈ 0.03.

Figure 4. The effective deuterium potentials Un(r) (6) “seen” by
fast proton as a function of distance to the atomic CI.
n = 0, 1, 2; l = 0; m = 0.

imposing (9a) all particular images of quite different elas-tic and inelastic events (“frames” of dσn′n (θ)) and voluntaryassigning the inclusive result to one “elementary” particle.
As soon as we distinguish experimentally the elastic andinelastic processes (with atoms it is possible), we willnever get the Rutherford cross section that always indi-cates non-elementary target structure. In other words, innature there are no potential Coulomb singularities cre-ated by “free” pointlike elementary particles, and our the-ory (1)-(10) is in complete correspondence with this.

4. Dressed electron (electronium)
4.1. Analogy with the scattering problem in
QED
It is important to point out a fundamental physical anal-ogy between the effects considered in this work, and thoseof quantum electrodynamics. In QED, strictly speaking,there is no elastic scattering either: any scattering is ac-companied with some soft radiation. It is the inclusivecross section that reduces to the Rutherford one (or moregenerally, to the “mechanical” cross section) in QED [3, 4].Experimentally observing the bremsstrahlung in electro-dynamics (quantum oscillator excitations) is physicallyanalogous to observing the target atom excitations n → n′in “backward” scattering. In both cases the energy ex-pended on excitations is much smaller than that spenton the whole target acceleration. Under these conditionspioneering experimentalists have dealt with the inclusivecross sections rather than with elastic ones. This fact ex-plains why the notions of point-like elementary electronsand nuclei have appeared and are still so widespread.In our atomic calculation the inelastic picture is obtainedsimply and naturally in the first Born approximation; thisis so because we take into account the electrons’ presenceexactly. Their role is to provide the “vacuum fluctuation”effect (charge smearing for elastic processes) and to de-scribe the natural inelastic channels for scattering froma non-elementary target. In QED such a result is alsoobtained but in higher orders and with a lot of techni-cal complications (divergences of integrals, artificial reg-ularizations, constant renormalizations, etc.). This is par-tially because the vacuum field fluctuations are considered
perturbatively (in this case one also starts from the nonsmeared potential 1/r which is too far from reality), andpartially because of the electron self-action terms.Indeed, the electron coupling to the electromagnetic fieldhas been proposed as the four-momentum “enlargement”in the free electron Hamiltonian:

p → p+ e
c A. (14)

This “minimal interaction” scheme works fine as long asthe electromagnetic field is considered as external to theelectron, but this kind of “coupling” leads to self-actionif A is the field radiated by the electron itself. Despitethe non-physical exact solutions which arise in ClassicalElectrodynamics from such an ansatz (runaway solutions),this scheme was adopted in QED anyway. No wonderthat the divergent self-energy terms reappear! In addition,considered perturbatively, the radiation term leads to theinfrared catastrophe.
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Is there any way to build the theory without self action,and to consider the radiation exactly rather than pertur-batively? Yes, there is. Let us first consider the standardnon-relativistic Hamiltonian in the frame of self-actionansatz:
Htot = p212M1 + V (r1 − re)

+ {(pe + e
cArad

)2
/2me +Hosc

}
. (15)

It may describe, for example, a scattering problem wherethe electron, permanently “coupled” to the quantized elec-tromagnetic field, serves as a target for particle 1. Thelatter acts on the electron via potential V (r1 − re).The exact solution accounting for the “influence” of theelectromagnetic fluctuations on the electron has not beenfound, even for the “in” and “out” states. The perturba-tive treatment of the radiation field Arad leads to physi-cally incorrect results: in the first Born approximation theprobability of not radiating any photon is equal to unity(⇒elastic processes), whereas in reality this probabilityis equal to zero. In the next Born approximation the prob-ability of emission of any photon diverges, etc.To “cure” it in QED, in a full analogy with the atomicdescription, we have to look at the permanently coupledelectron and the quantized electromagnetic field as at acompound system; let us call it an “electronium”. Then,such a system has its own center of inertia with coordi-nates RCIe and relative (internal) motion with coordinatesdescribing the internal degrees of freedom (think of anatom as a model). The relative motion may receive energyif its state is perturbed. We know from experiments that“pushing” an electron transfers some energy into photoncreation. It is the electromagnetic field oscillators whichreceive energy, so it is namely they that describe the rel-ative (“internal”) degrees of freedom of our electronium.In other words, the oscillator wave functions χk,λ
(
Qk,λ

)
play the same role for the electronium as the atomic wavefunction ψn(ra) for an atom. The total electronium wavefunction is then the product of the electronium center-of-inertia plane wave and the oscillator wave functions:

Ψe ∝ exp (iPCIeRCIe/~)∏
k,λ

χk,λ
(
Qk,λ

)
. (16)

The electronium non-relativistic Hamiltonian correspond-ing to such a solution is given with the formula:
He = (PCIe)2 /2me +Hosc. (17)If (17) replaces the third term in (15), no self action isintroduced and such a model leads to a correct physicaldescription of the bremsstrahlung. So our (“interaction”instead of “self-action”) ansatz is the following: insteadof (15) we must use this:

Htot = p212M1 + V (r1 − re) + {P2
CIe2me

+Hosc

}
. (18)

The oscillator field tension Ek,λ is proportional to the os-cillator canonical coordinate Qk,λ and the unit polarizationvector ek,λ: Ek,λ ∝ ek,λ · Qk,λ. The projectile-electron coor-dinate r1−re is expressed via the projectile-CIe coordinate
r = r1−RCIe and the oscillator fluctuating fields Ek,λ [5, 6]:
r1−re = r1−RCIe+∑

k,λ

−e · Ek,λ

mec2k2 = r+∑
k,λ

−e · Ek,λ

mec2k2 . (19)
The term ∑

k,λ

−e·Ek,λ
mec2k2 for the electronium plays the same roleas the term me
MA

∑
a

ra for the atom (see (1)): it is the dis-tance from the electronium CI to the electron. Keeping thisterm in (19) permits to act on the electron, while neglect-ing it means acting on the electronium CI, which leads toincorrect physics and to known mathematical problems inhigher orders.So, instead of “enlarging” the momentum pe → pe +(e/c)Arad, we propose to “enlarge” the coordinates in thepotential energy r → r +∑
k,λ

−e·Ek,λ
mec2k2 , to understand the ki-netic energy and mass in (17) as the electronium CI energyand mass, and to understand the oscillator Hamiltonian asdescribing the relative (internal) electronium motion. Bydoing so, we take into account the quantized electromag-netic field in the “in“ and “out” states exactly rather thanperturbatively.Then whatever the microscopic projectile-electron poten-tial is (Coulomb or not), it does not contribute to the elas-tic cross section due to vanishing the elastic form-factorof the dressed electron (electronium), as it should be:
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f00 (q) = ∫ exp(−iq∑
k,λ

ek,λ
e · Qk,λ

mec2k2
) ∏

k,λ

|χk,λ|2dQk,λ ∝ exp(−∑
k,λ

(qek,λ)2 4πe2
m2
ek3c3V~

)

= exp− kmax∫
kmin

(qe)2 4πe2
m2
ek3c3V~

Vk2dkdo(2π)3
 = exp(−e2ς(q) ln kmax

kmin
)∣∣∣∣

kmin→0 → 0. (20)

That means quantum mechanical smearing of the electroncharge over the whole space due to oscillator field fluctu-ations, so that the effective projectile-electronium elasticpotential U0(r) (see (7)) is equal to zero for the elasticscattering.It is easy to verify that all inelastic form-factors with finitenumber of final photons are also equal to zero, as it shouldbe.The totally inclusive cross section is different from zeroand it is reduced accurately enough to the “mechanical”cross section [4] due to the sum rule (10), just as in theatomic case:
dσincl(q) ≈ m24π2~4

∣∣∣∣∫ V (r) e−iqrd3r
∣∣∣∣2 dΩ. (21)

We see that the inclusive picture “corresponds” to scat-tering from the electronium CI as if the compound targetwere “pointlike”, without internal degrees of freedom, andsituated at the CIe. Thus, when the quantized electromag-netic field is understood as the relative (internal) motionin a compound system (the electronium in our case), thescattering from such a system is automatically inelasticand inclusive in the first Born approximation, just as inthe case of backward scattering from an atom as outlinedabove.The interaction ansatz (16)-(19) naturally resolvesthe energy-momentum conservation laws for thebremsstrahlung (see formula (5)): one part of theprojectile energy loss is spent on the target (electronium)acceleration as a whole and the remainder is spent on thetarget’s internal energy increase (oscillator excitations).Now there is no need to neglect the electron recoildue to the radiation since in our model it is includedautomatically without problem.No infrared divergences arise here since any dressedcharge scattering becomes formally a potential scattering
of compound systems with inevitable excitation of their“internal” (relative) degrees of freedom (photons), again,just as in the “backward” scattering of atoms where atomicelectrons are “virtual”. The obligatory inclusive consider-ation in such a theory yields the results corresponding

to inclusive experiments. Thus, all classical results areobtained now due to taking into account the radiationprocesses (18)-(21), as in experiments, rather than due toneglecting them in (15) (i.e., the term (e/c)Arad). In otherwords, instead of saying that the soft radiation has a clas-sical nature, it is correct to say that the classical radiationis the inclusive quantum mechanical result.
4.2. Bound electronium states
Hamiltonian (18) can also describe bound states of elec-tronium and a nucleus (with particle 1 as a nucleus). In-deed, introducing the CIA and relative coordinates, we ob-tain:
Htot = P2

CIA2MA
+ p22m + V (r)

+ [V (r +∑
k,λ

−e · Ek,λ

mec2k2 )− V (r) +Hosc

]
. (22)

The total (atomic) CI motion P2
CIA /2MA does not influ-ence the bound-state spectrum, and we omit this part.The reminding Hamiltonian describes the relative motionof electronium and the nucleus (i.e., an atom). As wecan see, it is not only the atomic potential V (r) (whichis the principal term) which takes part in creating thenegative charge cloud in the atom, but also the oscilla-tor potentials. In reality the oscillator numerical contri-butions are rather small. It is because in an atom thelong-wave oscillators are forced to have the atomic fre-quency ω0 so their smearing effect is finite (see formula(20) with finite kmin). The easiest way to see it is to con-sider the operators in the Heisenberg representation oreven the classical Hamilton equations Q̇ = ∂H/∂P, Ṗ =

−∂H/∂Q: the oscillator field equations are coupled tothe atomic variables due to the gradient (driving force)
∂V (r+∑

k,λ

−e·Ek,λ
mec2k2 )/∂Qk,λ. For low-frequency oscillators thisis the main force in comparison with the proper elasticforce. That leads to the effective low-frequency cutoffin the oscillator spectrum, as if the whole spectrum had
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shifted ωk,λ → ωk,λ + ω0. This fact then may be usedin the usual Schrödinger picture to estimate the oscilla-tor contributions. For that the exact interaction poten-tial is expanded in powers of δr = −∑
k,λ
e · Ek,λ/mec2k2:

V (r+δr) ≈ V (r)+[∂V (r)/∂r] δr+(1/2) [∂V (r)/∂ri∂rk ] δriδrk .The approximate Hamiltonian p2/2m+V (r) gives a typicalnon-perturbed atomic spectrum. This spectrum is slightlycorrected when the term (1/2) [∂V (r)/∂ri∂rk ] δriδrk is con-sidered perturbatively. In particular, the average valueof this term 〈n| (1/2) [∂V (r)/∂ri∂rk ] δriδrk |n〉 (where |n〉 isthe product of a non-perturbed atomic wave functions andoscillator wave functions with ω > ω0), gives the atomicenergy shifts known as the Lamb shifts [6] (the main non-relativistic part of it, of course). This is another validationthat our ansatz (16)-(19) is the right approach to the QEDformulation without infinities.I think the relativistic Hamiltonian of Novel QED shouldbe constructed in the same spirit. We propose to modifythe usual Coulomb-gauge Hamiltonian in the followingway: we must omit the term j ·Arad as originating from thewrong self-action ansatz (14). Instead we have to “insert”

the oscillator variables into the electron coordinate re =
RCIe −

∑
k,λ
egk,λEk,λ for each electron and positron so thatany fermion would be constructed as an electronium –with its own oscillator Hamiltonian. Each “free” fermionHamiltonian should be understood as the Hamiltonian offree-fermionium CI motion. Any fermion-fermion distancein the four-fermion Coulomb interaction, say, r1−r2 shouldbe expressed via CIe and relative variables:

r1 − r2 = (RCIe)1 − (RCIe)2
−
[∑

k,λ

e1 (gk,λEk,λ
)1 −∑

k,λ

e2 (gk,λEk,λ
)2
]
,

with
gk,λ = (mec2k2√1 + (~k/mec)2)−1

.

This will provide each fermionium with its own form-factordue to its own oscillator field influence (as in (11)). Hencethe relativistic Hamiltonian reads now:

HQED = ∫ d3P ∑
c = electron,
positron

{
πc(P, t)γ0(iγPηc +me)uc(P, t) +Hosc. P,c

}+ 12
∫
d3R1

∫
d3R2 j0(R1, t)j0(R2, t)4π |r1 − r2| . (23)

In the momentum space the electronium elastic form-factor,if non zero, serves as a natural regularization factor as ittends rapidly to zero when |q| → ∞. It is useful in higherorders of relativistic calculations in an external field whichis ”switched on” as usually: P → P + (e/c)Aext(xe). Sono ultraviolet divergences arise since first, no electron-radiation self-action is introduced in our electroniummodel, and second, the self-energy fermion loops orig-inating in higher orders from the four-fermion Coulombinteraction vanish in scattering problems due to vanishingthe elastic form-factors at each vertex. In bound statesthe electronium form-factor is non zero but it makes theloop contributions finite and small thanks to its significantregularization property. Thus, the problem of IR and UVdivergences is removed in QED at one stroke by usingthe notion of an electronium (built in full analogy withthe atom). No free nuclei exist in atoms; similarly no freeelectrons exist in nature. No bare constants are intro-duced, no renormalization is necessary. No connectionbetween the “bare” and real charges appears in such a

theory (there is no such a feature as the Landau pole, forexample).
5. Conclusions

Even in non-relativistic quantum mechanics one can es-tablish that a classical pointlike elementary particle is infact nothing but the inclusive picture of many different anddistinguishable (in principle) elastic and inelastic events.This understanding is much deeper than the usual quasi-classical limit ~ → 0 used in the proof of the correspon-dence principle. Strictly speaking, an atom as a “dressednucleus” does not manifest a pointlike (Coulomb) behaviorat short distances r → 0; neither does the real (dressed)electron which is always coupled to the quantized electro-magnetic field. Taken into account correctly – in the firstturn, the vacuum field fluctuations lead to the quantum-mechanical charge smearing and to the appearance of in-elastic processes in the first Born approximation. No in-
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finite “vacuum polarization” then arises to “screen” the“pointlike electron” field. This smearing physics cannotbe obtained “perturbatively”, even after renormalizations(see Section 2.1). That is why theorists have not inventedanything more realistic than the “screening” (compensat-ing) infinities or referring to unknown phenomena at thePlank scales.Although the physics of the charge smearing outlinedabove is elementary, natural, and even known to someextent, its fundamental character has never been duly ap-preciated: the electron-field coupling is still consideredas the self-action in QED. In this sense our “non pertur-bative” atomic calculations are rather instructive as, beingflawless, they demonstrate how the correct physical the-ory can be constructed. If we accept the picture given inthis article for a bound nucleus, then we are conceptuallyready to admit the same picture for the real electron inQED – it is a compound system with a smeared quan-tum mechanically charge where the relative (or “internal”)degrees of freedom are described with the photon oscilla-tors. In other words, the radiated photons are just excitedstates of electronium.We believe that the other “gauge” field theories shouldbe reformulated in the same way: the corresponding self-action terms (gauge covariant derivative Dµ = ∂µ + eAµ)should be replaced with the fermionium CI free motionderivative, the “gauge” field tensions should be “inserted”into the fermion coordinates to describe the relative (in-ternal) degrees of freedom and symmetries of the cor-responding compound “fermioniums”. Then, for example,free quarks and gluons will not exist in the theory, in fullagreement with non-existence of free electrons and pho-tons in our electronium dynamics.
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