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Abstract—The comprehensive experimental analysis of the fluid viscosity effect on the standing
gravity waves excited at parametric resonance is carried out. The viscous effects on the frequency
range of excitement of the second wave mode, its resonance dependences, and the processes of
damping and approaching the steady-state regime are quantitatively estimated by varying the
viscosity over a wide range. It is found that the waves are regularized without breaking when the
kinematic viscosity of the working medium becomes higher than a threshold value. A mechanism of
viscous regularization of wave motion is suggested. In accordance with this mechanism, the effects
observed experimentally relate to the presence of the shortwave cutoff domain in which viscous
dissipation becomes the dominant factor and the shortwave perturbations responsible for breaking
the standing wave are suppressed.
Key words: regular, irregular, and breaking Faraday waves, fluid viscosity, dissipation effects,
damping coefficient.
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The set of the experiment [1], namely, a vessel with fluid oscillating in the vertical direction is
considered, unifies many studies on parametric resonance in fluid with the free surface. Under the
resonance conditions, the wave motions of fluid are observed in the form of standing surface waves
whose frequency is multiple to half the vessel frequency, i.e., the Faraday waves. The fluid viscosity is
responsible for narrowing the frequency range of excitation of surface waves, i.e. the vessel oscillation
amplitude must be greater that a certain threshold value [2, 3]. Under the experimental conditions, the
dissipative wave losses can be quantitatively estimated in terms of the damping coefficient, the threshold
amplitude, and the parametric oscillation breakdown frequency [4].

The height of the excited Faraday waves depends on the vessel oscillation frequency and can increase
when the frequency varies gradually. As shown in [5], as the wave height increases, the nature of
oscillations of the free fluid surface changes radically, namely, the regular waves transform into breaking
waves characterized by jet ejections and droplet separations on the wave crest. This wave breakdown
pattern can be observed not only for the Faraday waves but also for the steading surface gravity waves
excited by wave-generators on the end-face walls of a rectangular vessel [6] and under harmonic
oscillations of the vessel in the horizontal direction [7]. We note that water was used as the working
fluid in these studies and no experiments on the investigation of the effect of viscosity of the medium on
transition to breaking waves were carried out.

The effect of viscosity on the free capillary-gravity [8–10] and gravity waves [11] was taken theoret-
ically into account by separating the motion of fluid onto the potential and vortex parts. In the linear
formulation this makes it possible to obtain the complex dispersion relation.

The aim of the present study is to investigate experimentally the effect of fluid viscosity on breaking
standing gravity surface Faraday waves. In [12] the authors showed that increase in the viscosity by
two orders leads to wave regularization, but the effect of intermediate values of the viscosity was not
considered. In what follows, we will discuss the results of experiments in which the fluid viscosity
changes from 1 to 86 cSt. The theme of the investigations relates to the solution of practical problems
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Table 1

ρ, g/cm3 ν, cSt ΔΩ, s−1 Γ δ

Water

1.00 1 0 0.21 0.09

Vegetable oil–kerosine solution

0.89 25.35 0.175 0.24 0.262

0.90 31.51 0.415 0.272 0.295

0.90 39.52 0.465 0.280 0.348

0.91 46.33 0.775 0.297 0.403

0.92 56.42 0.975 0.326 0.441

0.93 63.34 1.292 0.310 0.543

Aqueous sugar solution

1.21 9.03 0.075 0.215 0.176

1.23 16.24 0.195 0.261 0.255

1.25 28.96 0.515 0.267 0.341

1.28 48.30 0.635 0.309 0.368

1.30 85.97 1.292 0.230 0.439

of aerospace techniques, petroleum product transfer by sea and ground transports, and suppression of
oscillations of fluid with the free surface in the form of standing waves [3, 13].

1. SET OF THE EXPERIMENT

Similarly to [12], for studying the effect of viscosity on intense fluid oscillations, we have used the
regime of parametric excitation of the second mode (n = 2) of standing gravity waves on the free surface
of a fluid of depth h = 15 cm located in the rectangular vessel made of plexiglass of length L = 50 cm,
width W = 4 cm, and height 50 cm. Its vertical harmonic oscillations at a frequency Ω and with an
amplitude s were provided by an electromechanical vibration table.

The two-dimensional wave motions were investigated in the regime of basic Faraday reso-
nance [5, 12]. In this regime the vessel oscillation frequency Ω is higher than the frequency ω of the
excited waves by two times. The frequency Ω was varied over the range 18−24 s−1 when the amplitude
was fixed s = 0.75 cm. This ensured variation in the steepness Γ = H/λ on the interval 0.004−0.66 at
the wave length λ = 50 cm (here, H is the wave height defined as the distance between the trough and
the crest of a wave). The range of variation in the overloading ε = sΩ2/g is estimated from 0.24 to 0.44.

In the experiments we used degasified tap water, mixtures of vegetable oil and kerosine, and aqueous
sugar solutions. Variation in the fluid viscosity was implemented by adding kerosene in oil or water
in 63% sugar solution. The dynamic viscosity of the solutions thus obtained was measured using the
HAAKE RS-1 rheometer and their density by an areometer. The surface tensions borrowed from the
literature are equal to σ = 73, 40, and 80 dyne/cm for water, vegetable oil, and 63% sugar solution,
respectively. The measurements and experiments were carried out at temperature of 20−21◦C. In Table
1 we have presented the values of the density ρ and the kinematic viscosity ν of the liquids used in the
experiments.

The Reynolds number Re = U0λ/ν determined from the maximum velocity U0 = ΩH/4 and the wave
length λ = 50 cm varied within the limits from 103 to 106.

The waves were recorded by video using the DIMAGE Z2 and Canon PowerShot SX50HS cameras
at the speed of 30 and 120 frames per second. The ImageJ program was used for successive processing
of the video-tapings.
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Fig. 1. Instability domains of the second wave mode: 1 and 2 correspond to water and oil, respectively.

The experimental value of the damping coefficient b was estimated using the methods described
in [14]: the vibration table was switched off after establishing steady-state fluid oscillations at one of
the resonance frequencies Ω and the process of damping the second wave mode was taped by video after
full stopping of the vessel.

According to the video recording data, the accuracy of measurements of the displacement of the
free fluid surface from the equilibrium position was 0.1 cm. The quantity b was determined as follows:
b = T−1 ln(Hm/Hm+1), where T = 2π/ω is the wave period and Hm and Hm+1 are the wave heights
taken in the oscillation period. The damping rate δ = bT was used as the dimensionless characteristic
of the dissipative fluid properties.

Under the experimental conditions the Faraday waves are similar to free surface waves whose
frequency is equal to ω0 = (gk tanh kh)1/2 = 10.85 s−1, where g is the gravity acceleration and k =
2π/λ is the wavenumber. The damping coefficients obtained experimentally are bexp < 1 c−1 for all the
fluids. Since ω0/bexp ∼ 10, the media under consideration can be related to low-viscosity ones in the
wave process considered.

The theoretical model [15] was used to interpret the experimental data on wave excitation.

2. RESULTS AND DISCUSSION

First of all, the frequency range of excitation of the surface Faraday waves was investigated. In Fig. 1
we have reproduced the instability domains of the free surface of water and oil. From these data it follows
that the frequency range of excitation narrows significantly for the higher-viscosity fluid. Moreover, there
is a threshold value s∗ of the vessel oscillation amplitude associated with viscosity which is equal to
0.04 cm for water and 0.7 cm for oil. This fact determined the choice of the quantity s = 0.75 cm which
guarantees experimental excitation of the second mode on the surface of both water and oil and 63%
sugar solution.

Curves I and II are the calculated theoretical boundaries of the instability zone [15] determined by
the inequalities

1−
√
(ε/2)2 − 16b2/Ω2 < 2ω/Ω < 1 +

√
(ε/2)2 − 16b2/Ω2.

The Faraday waves observed on the water surface can be divided into three categories: regular,
irregular, and breaking waves [5].

The regular waves are the waves whose profile possesses the temporal periodicity and the spatial
symmetry about the vertical passed through the wave crests.

The waves for which the temporal periodicity and spatial symmetry are violated but the entire volume
of oscillating fluid still conserves connectedness were classified as irregular waves.
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Fig. 2. Envelopes of the free water surface in the case of the regular and irregular waves (a and b, respectively);
the corresponding wave frequencies and heights: Ω = 23.62 and 22.85 s−1 and H = 5.1 and 10.5 cm; spectra and
chronograms (in inserts) of the displacement of fluid at the center of vessel for Ω = 23.62 and 22.85 s−1.

The waves in which individual liquid droplets or jets are separated from the free surface were related to
breaking Faraday waves. These waves are characterized by transition from simply to multiply connected
free surface.

In Figs. 2a and 2b we have reproduced examples of the envelopes of free surface for the regular
and irregular waves. The envelopes are the result of superposition of 60–70 frames at the speed of
30 frames per second. This corresponds to the time interval of approximately 5 oscillation periods. The
chronograms and the amplitude-frequency spectra S(ω) of the displacement of free fluid surface at the
center of vessel were obtained from the video-taping data (see Figs. 2c and 2d).

We can see that the regular wave is nonlinear as a result of asymmetry of the wave profile (Fig. 2a)
and its spectrum (Fig. 2c) has two peaks at the frequencies 11.81 and 23.62 s−1 corresponding to the
main and second harmonics.

In addition to the main and second harmonics (11.42 and 22.84 s−1, respectively), the spectrum of
the irregular wave (Figs. 2b and 2d) has peaks at the frequencies 3.77, 15.34, 19.10, 26.63, 30.49, and
34.35 s−1.

In Fig. 3 we have reproduced breaking waves corresponding to the frequencies Ω = 22.07 and
19.51 s−1 (a and b, respectively). If in the case (a) the wave breakdown is manifested in the form of
jet ejections from the wave crest with separation of individual droplets, then for (b) lateral ejections and
separation of considerable fluid fragments are also characteristic.

The waves observed on the surfaces of oil and sugar solution of the maximum viscosity (ν = 63.34
and 85.97 cSt) are regular over the entire frequency range of parametric excitation. In Fig. 4 we have
reproduced the shape of the free surface obtained by means of superposing ten successive profiles of the
maximum development of the wave mode for oil and sugar (a and b, respectively).

In Fig. 5 we have reproduced the envelopes of the free surface, the frequency spectra, and the
chronograms of the surface displacement at the center of vessel for two frequencies in the case of
oil. The observed waves (a and b) are nonlinear and two peaks corresponding to the first and second
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Fig. 3. Breaking waves on the free water surface: a and b correspond to Ω = 22.07 and 19.51 s−1 and H = 12.6 and
19.5 cm; the shooting speed is equal to 30 frames per second; the envelopes are obtained by superposition of 100 frames
(seven wave periods).

(a)
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(b)

Fig. 4. Regular waves on the surfaces of vegetable oil of the viscosity ν = 63.34 cSt (a) and of aqueous sugar solution
with ν = 85.97 cSt (b); the excitation frequencies Ω = 19.69 and 20.40 s−1 and the wave heights H = 14.7 and
10.9 cm, respectively.

harmonics can be seen on the spectra (c and d). The wave heights (a and b) are commensurable with
the corresponding quantities for the irregular and breaking waves on the water surface (see Figs. 2b and
3a); however, there are no any signs of formation of jets or separation of droplets, as in the case of water.

In Fig. 6a we have reproduced the resonance dependences of the steady-state wave height H(Ω) as a
function of the vessel oscillation frequency as the integral wave characteristic. We can see that the wave
height increases monotonically with decrease in Ω to a certain frequency corresponding to the oscillation
breakdown. This occurs on the surfaces of all fluids considered.

For water (1) the regular and irregular (breaking) waves can be observed over the frequency ranges I
and II, whereas the waves on the surface of oil and sugar solution (of maximum viscosity) remain regular
over the entire frequency range of excitation of the second wave mode (see data 2 and 3 in Fig. 6a).

We note the shift ΔΩ of the resonance dependences for oil (2) and sugar solution (3) to the
low-frequency domain. This is associated with decrease in the eigenfrequency and narrowing of the
resonance zones due to increase in the viscosity of the working fluids as compared with water (Fig. 6b
and Table 1). As the viscosities of the oil and sugar solutions decrease, the corresponding resonance
dependences are displaced to curve 1 for water (Fig. 6a).

Decrease in the viscosity affects not only the frequency shift ΔΩ but also changes qualitatively
the nature of fluid oscillations. For pure oil (ν = 63.34 cSt) and its mixture with kerosine of viscosity
56.42 cSt, as well as for the sugar solution of maximum viscosity ν = 85.97 cSt, the waves observed are
regular at all the frequencies of the dependence H(Ω), i.e., the limiting steepness is determined by only
the breakdown frequency. For oil-kerosine mixtures with ν = 46.33, 39.52, and 31.51 cSt and aqueous
sugar solution with ν = 48.30 and 28.96 cSt at a certain Ω the standing wave becomes irregular in
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Fig. 5. Envelopes of regular oscillations of the free surface of oil (ν = 63.34 cSt): a and b correspond to Ω = 21.22 and
19.64 s−1 and H = 11 and 15 cm, respectively. The corresponding frequency spectra and chronograms (in inserts) of
the displacement of fluid surface at the center of vessel (c and d, respectively).
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Fig. 6. Resonance dependences H(Ω) (a): 1, 2, and 3 correspond to water, oil (ν = 63.34 cSt), and aqueous sugar
solution (ν = 85.97 cSt), respectively; I and II correspond to the range of excitation of the regular, irregular, and
breaking waves on water; broken arrows correspond to the oscillation breakdown. Frequency shift ΔΩ as a function of
the viscosity ν of the working medium (b): 1 corresponds to the oil-kerosine mixture, 2 to the aqueous sugar solution,
and 3 to the approximating curve ΔΩ = 0.04 + 0.01ν1.1.

conserving connectedness of fluid. In the case of oil-kerosine mixtures with ν = 25.35 cSt and aqueous
sugar solution with ν = 16.24 cSt characteristic indications of wave breaking can be observed, namely,
these are jet ejections from the wave crest with separation of droplets and considerable fluid fragments.

Thus, the results of our experiments on excitation of standing waves on the free surface of a viscous
fluid make it possible to conclude the following. If the vessel oscillation frequency Ω decreases along
the resonance curve H(Ω) (wave height increases), then only the regular waves can be observed when
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Fig. 7. Limiting steepness Γ = H/λ of the regular wave as a function of the fluid viscosity ν: 1 corresponds to the
oil-kerosine mixture, 2 to the aqueous sugar solution, and 3 to the approximating curve Γ = 0.21 + 0.002ν.
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√
ν.

ν > 50 cSt. When ν < 20 cSt the fluid behaves similarly to water for which the regular, irregular, and
breaking Faraday waves are characteristic. The intermediate interval of the fluid viscosity 20 < ν <
50 cSt ensures excitation of the regular and irregular waves without signs of breaking.

An analysis of the resonance dependences makes it possible also to estimate the effect of the fluid
viscosity on the limiting height of the regular wave (Table 1). In Fig. 7 we have reproduced the
experimental dependence of the limiting wave steepness Γ = H/λ as a function of the kinematic fluid
viscosity ν. If for water Γ = 0.21, then, as the viscosity of the medium increases, the limiting steepness
grows monotonically and reaches Γ = 0.326 for ν = 56.42 cSt.

The process of damping of the second wave mode is investigated for fluids used in the experiments
and the damping rate δ is estimated in varying the initial wave height H0 from 7 to 12 cm. In the case of
water δ = 0.092, whereas for oil and sugar solution of the maximum viscosity we obtained similar values
δ = 0.495 and 0.510. Thus, in the case of vegetable oil and sugar solution (ν = 63.34 and 85.97 cSt,
respectively) the damping rate increases by five times as compared with water (Fig. 8a).

In Fig. 8b we have reproduced the damping rate δ as a function of the fluid viscosity ν. We can see
that the damping rate increases monotonically with the viscosity. In Table 1 we have also given the
values of the damping rate δ.

In Fig. 9 we have reproduced the data on establishing the steady-state oscillation regime for water
and oil. In the case of both water (1) and oil (2) the wave height reaches the steady-state value Hst

approximately in the same time, namely, in 40− 50 periods. However, if for oil this process occurs
gradually, then damped re-oscillations about the steady-state value with the maximum initial amplitude
of oscillations of the order of 0.4Hst are characteristic of the waves on the water surface.
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Fig. 9. Process of tending the oscillations to the steady-state regime: 1 corresponds to water, Ω = 23.36 s−1, and
Hst = 6.8 cm; 2 corresponds to vegetable oil,Ω = 20.94 s−1, andHst = 11.6 cm; curve I corresponds to the numerical
solution of the system (2.1) for H0 = 0.1 cm and θ0 = 0.

On the basis of the theoretical model [15] the process of establishing the steady-state oscillations
can be described by the following system of equations for the height H(t) and the slow phase θ(t) of the
wave:

dH

dt
= −bH +

ε

2Ω
ω2H sin 2θ,

dθ

dt
= Δ+

ε

2Ω
ω2 cos 2θ − β

H2

4
ωk2,

β =
1

64
tanh−4 kh

(
2 tanh6 kh+ 3 tanh4 kh+ 12 tanh2 kh− 9

)
,

ψ =
Ωt

2
+ θ(t), Δ = ω − Ω

2
, (2.1)

where ψ is the phase of the wave.
The numerical solution of this system shown in Fig. 9 by curves I describes the experimental data

with sufficient accuracy.
The data given in Figs. 1–9 characterize the effects of fluid viscosity on the process of parametric

excitation of standing surface gravity waves, namely, the frequency range of excitation of the second wave
mode, its resonance dependences, the processes of damping and tending to the steady-state regime. The
question of viscous regularization of irregular and breaking waves remains open. With regard to this fact,
in what follows we will consider the effects of fluid viscosity on the dynamics of irregular and breaking
waves.

For water the transition from irregular to breaking waves takes place when the steepness Γ > 0.22. In
Fig. 10 we have reproduced the sequence of frames showing the generation, development, and collapse
of the cavity in the stage of formation of the crest in the central part of the vessel. As a result of trough-
crest transition, the central part of fluid is displaced upward and small-scale perturbations of dimensions
not greater than 5 cm can be seen on the wave profile in the interval 0.944 − 0.984 s. A completely
formed cavity can be observed in the middle of the wave profile at t = 1.016 s. The successive collapse of
the cavity (t ≥ 1.040 s) leads to jet ejection with separation of droplets.

When ν > 50 cSt the wave profiles are absolutely smooth on the surface of vegetable oil and sugar
solutions over the entire range of the steepness Γ. As an example, in Fig. 11 we have reproduced the
sequence of wave profiles on the oil surface during half the wave period. We can see that the wave
is nonlinear but regular, its profile is asymmetric without any small-scale perturbations and signs of
collapse.

The only reason of difference between the wave patterns in Figs. 10 and 11 is the viscosity of
working fluid. Increase in the viscosity of oscillating fluid to 63.34 cSt leads to total suppression of the
collapse process and regularization of standing wave: small-scale perturbations leading to formation
of collapsing cavity disappear. We note that the observed regularities are determined but only the fluid
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Fig. 10. Sequence of the video frames illustrating the process of collapse of the gravity Faraday waves on the free water
surface during half the wave period: Ω = 21.67 s−1 and Γ ≈ 0.30; the instant of time is shown in the upper left corner
of the frame.

viscosity and do not relate to the effect of the surface tension since its decrease (in the case of oil) or
increase (in the case of sugar solution) with respect to its value for water does not affect the results
obtained [12].

To interpret the experimental results obtained, we will use the following dispersion relation ω = ω(k)
obtained in [11] for the free standing gravity waves on the surface of infinitely deep viscous fluid which
establishes the relation between the wave length λ, frequency ω, and damping coefficient b:

[1 + ζ2]2 = 16ϑ3(ζ − ϑ), (2.2)

where ϑ = νk2/ω0, ζ = −(ω∗ − 2νk2)/ω0, ω∗ = b+ iω, ω0 = (gk)1/2, k = πn/L, and n = 2.
In Fig. 12 we have reproduced the results of the numerical analysis of Eq. (2.2) in the form of the

dependences ω(λ) and b(λ). The frequency of free standing gravity waves on the surface of infinitely
deep ideal fluid (ν = 0) is determined by the relation ω0 = (gk)1/2 and increases to infinity as the wave
length decreases (data (1) in Fig. 12a). If the viscosity of oscillating fluid is taken into account, then the
wave frequency takes zero value ω = 0 at a certain critical wave length λcr. For water (2) this quantity is
equal to λcr = 0.02 cm. As the viscosity increases to ν = 16.24 cSt (aqueous sugar solution), we have
λcr = 0.15 cm (data (3)). For vegetable oil (4) and 63% sugar solution (5) the critical wave lengths are
estimated as λcr = 0.40 and 0.48 cm, respectively.

FLUID DYNAMICS Vol. 53 No. 6 2018



EFFECT OF FLUID VISCOSITY 759

0 0.040 0.080

0.112 0.136 0.152

0.168 0.192 0.224

0.240 0.264 0.312 

50 cm

Fig. 11. Sequence of the video frames demonstrating the second wave mode on the surface of vegetable oil (ν =
63.34 cSt) during half the wave period: Ω = 19.88 s−1 and Γ = 0.30.

Consequently, there are critical values of the wave length λcr which establish the shortwave limit of
gravity wave excitation. When λ < λcr the fluid viscosity suppresses completely any wave motion. An
increase in the viscosity leads to an increase in this limit. This result confirms the experimental data on
viscous regularization of breaking standing waves and makes it possible to explain the absence of small-
scale perturbations on the wave profiles of viscous fluid by means of shortwave cutoff. Underestimated
(as compared with the experiment) calculated values of λcr can be explained by the fact that both finite
fluid depth and viscous losses on the lateral vessel walls and bottom are neglected in the dispersion
relation (2.2).

In Fig. 12b we have reproduced the graphs of the damping coefficient as a function of the wavelength
obtained in the numerical solution of (2.2) for water (2) and oil (4). For these fluids we have 0.0003 and
0.0193 s−1, respectively, for the second wave mode (λ = 50 cm). The calculated values of the damping
coefficient are significantly smaller than the experimental values (Table 2).

We will now estimate the contribution of viscous losses on the vessel walls. In [16, 17] it was shown
that the damping coefficient b of a standing wave on the surface of fluid of depth h in the vessel of length
L and width W can be determined as follows:

b = b1 + b2 + b3,
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b1 = 2νk2, b2 =

√
ων

2

(
L+W

LW
+ k

L− 2h

L sinh 2kh

)
, b3 =

√
ων

2
k

1

sinh 2kh
.

Here, the coefficients b1, b2, and b3 determine the wave energy dissipation over the entire fluid
volume, on the vessel walls, and on the bottom, respectively. In Table 2 we have given the measured
(experimental) and calculated (theoretical) damping coefficients bexp and bthe, as well as the values
of b1−3. Despite a certain difference between the experimental and theoretical values of the damping
coefficient, we can see that dissipation on the vessel walls and bottom makes the main contribution to
the wave energy losses while the losses in the fluid volume are rather small.

The estimate of the damping coefficient Re[ω∗] = b obtained from the dispersion relation (2.2)
coincides with b1 for water and oil. In Fig. 12b we have plotted the graphs of b1 as a function of λ
for water and oil (broken curves I).

Taking the surface tension of fluids σ into account and consideration of the capillary-gravity waves
for which ω0 = (gk + σk3/ρ)1/2 do not change [8, 9] the form of the dispersion relation (2.2). In this

Table 2

Water,
ν = 1 cSt

Oil,
ν = 63.34 cSt

Sugar solution,
ν = 85.97 cSt

bexp, s−1 0.157 0.863 0.752

bthe, s−1 0.065 0.525 0.632

b1, s−1 0.0003 0.0193 0.0275

b2, s−1 0.0634 0.4954 0.5916

b3, s−1 0.0013 0.0106 0.0126
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case the values of the critical wave length for water, oil, and 63% sugar solution λcr = 4.8× 10−6, 0.03,
and 0.04 cm turn out to be significantly less than the corresponding quantities for the gravity waves.

Thus, although the dispersion relation (2.2) explains qualitatively the effect of viscous regularization
of the wave motion for infinitely deep viscous fluid unbounded in the horizontal direction, it does not
ensure quantitative coincidence with the experimental data since the effect of the finite fluid depth and
the vessel walls is neglected in the theoretical model. Nevertheless, from (2.2) it follows that just the
fluid viscosity ensures suppression of shortwave perturbations responsible for breaking the waves.

SUMMARY
As a result of the comprehensive experimental investigation of the standing gravity waves excited

at parametric resonance, the quantitative data on the effect of fluid viscosity on the frequency range of
excitement of the second wave mode, on the resonance dependences and the processes of damping and
tending the oscillations to the steady-state regime.

It is found that increase in the kinematic fluid viscosity by 50 times as compared with water changes
radically the dynamics of wave motion, namely, regularization of waves with total suppression of the
process of their breaking in the form of jet ejection from the crest and its subsequent disintegration is
observed.

From the numerical analysis of the dispersion relation for free standing gravity waves on the surface
of a viscous fluid there follows the presence of the shortwave limit of existence of waves of this type.
In this case viscous dissipation becomes the dominant factor suppressing the shortwave perturbations
responsible for breaking the Faraday waves.

The work was carried out on the theme of the State Program No. AAAA-A17-117021310375-7 and
with partial support for V.A. Kalinichenko from the Russian Foundation for Basic Research (project No.
18-01-00116).
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