Overview of Some Aspects of BlackHoleOrbits

George Jones

June 29, 2005

1. Solving the Differential Equations

This programme solves the coupled system of differential equations

dr

a —f

40 _ L (1)
fiit I >

L = L5k 45l

Here, r and ¢ give the position of the particle using standard polar coordinates for the plane, L
is the relativistic orbital angular momentum of the particle, k = 1 for the massive particle case,
and k = 0 for the case of light. The variable p is used to make all the equations first-order.

To see how to solve this system on a computer, consider an equivalent version of the second
equation:

A L
Amy X = @)
If At is small, then
Ap L
A)

is a good approximation. Writing A¢ = ¢4 — ¢ and rearranging gives
L
Py = ¢ + r_gAt- (4)

Applying similar considerations to each equation in the system results in

ro = 11+ pAt

¢y = &+ A : (5)
2 2

pr = m+ (& - 15k —45L7) Ae

Solving the exact system (1) numerically on a computer involves repeatedly iterating the
approximate system (5). A first attempt! might be:

1 This, and other programming aspects, are written in Java-like pseudocode, not Java.

while (appropriate condition){

r = r + pkdt

phi = phi + L/r/r*dt

p = p +(L*L/r/r/r - 156%k/r/r - 45*%L*L/r/r/r/T)*dt
}

This first attempt doesn’t quite work because r is updated before r is used in the equations
that update ¢ and p, while the pre-updated value of r is needed to update ¢ and p. Also, initial
values for r, p, and ¢ are needed to start things off.

phi = PI/2 // starts the particle off directly above black hole
input r, vO, launch angle; //implement a gui to do this
calculate_p()
while(appropriate condition){

phi = phi + L/r/r*dt

p = p +(LxL/r/r/r - 15%k/r/r - 45%L*L/r/r/r/r)*dt

r = r + pkdt

3

This is Euler’s method for solving differential equations, which was the method I first used
to get the programme up and running, and which, for simplicity, I use below when other aspects
of the programme are illustrated. After the programme was working, I implemented the fourth-
order Runge-Kutta method for solving differential equations in order to achieve better accuracy
and speed.

2. Displaying the Result

The animation display region should be thought of in 2 complementary ways: as a rectangular
portion of the computer screen that consists of pixels; as a rectangular region of the space around
the black hole where distances are measured in kilometres. Fach of these ways has its own set
of coordinates, and the method for converting between these sets of coordinates follows.

The animation is displayed in a 500pixel x 500pixel region of the computer screen. The
computer uses x versus y Cartesian screen coordinates for this region, but in a slightly non-
standard (for mathematicians, maybe not for computer scientists) way. The origin for the
screen coordinates (x,y) is at the top left of the display, x increases horizontally from left to
right, and y increases vertically from top to bottom. Consequently, the screen coordinates of the
display’s: top left corner are (0,0); top right corner are (499, 0); bottom left corner are (0, 499);
and bottom right corner are (499, 499).

The rectangular region in space is 620 km x620km and has standard Cartesian coordinates
whose origin resides in the middle of this region. Thus, the physical coordinates (Zphysicals Yynysiea)
of the display’s: top left corner are (—310, 310); top right corner are (310, 310); bottom left corner
are (—310, —310); and bottom right corner are (—310, 310).

Comparing screen and physical widths of the display region gives the unit conversion between

physical distances in kilometres and screen distances in pixels:

620km = 500pixels (6)
lkm = %pixels ’
It might seem reasonable to put
r = mx hysical
859 P (7)
Y = %30Yphysical

but this doesn’t take into account that the physical origin has screen coordinates (z,y) =
(250, 250) , nor does it take into account that the screen coordinate y increases in the down
direction, while the physical coordinate ypnysical increases in the up direction.

r = %xphysical + 250
Yy = _6_28yphysica1 +250 °

(8)

The 250’s give the offset between the physical origin and the screen origin, and the negative
sign gives changes the sense of the y direction. Note that since a pixel has non-zero width,
the physical coordinates of the corners of the display region do not quite map into the screen
coordinates of the corners.

The relationship between the Cartesian coordinates of physical space and the polar coordi-
nates used in the system of differential equations above is Tphysical = 7 €08 @, Yphysical = T 5in @.
These are used to plot on the screen the numerical solution to the system of differential equations
once every iteration of the while loop.

First an explanation of what happens when the trail is turned on. Every iteration of the
while loop, a yellow pixel is turned on at the screen location of the orbiting particle, and, if dt
is small enough, several iterations of the while loop are needed to produce a change in x (or y)
larger than the width of 1 pixel. Therefore, the same pixel is turned on for several iterations of
the while loop before an adjacent pixel is turned on. The result is a continuous trail.

while(appropriate condition){
put_yellow_pixel(r*cos(phi)*500/620 + 250 , 250 - r*sin(phi)*500/620)
r = r + pxdt
phi = phi + L/r/r*dt
p = p +(LxL/r/r/r - 15%k/r/r - 45*LxL/r/r/r/r)*dt
}

When the trail is turned off, every iteration of the while loop, a small white circle is turned
on at the screen location of the orbiting particle, and a small black circle is “turned on” at the
previous location of the orbiting particle. If a small black circle were not “turned on” at the
previous location of the orbiting particle, then a thick white particle trail would appear. If dt is
small enough, the combination of white and black circles make the white circle appear to move
smoothly through space.

while (appropriate condition){

put_black_circle(old_r*cos(old_phi)*500/620 + 250 , 250 -
0ld_r*sin(old_phi)*500/620)

put_white_circle(r*cos(phi)*500/620 + 250 , 250 - r*sin(phi)*500/620)
old_r =r
old_phi = phi
r = r + pkdt
phi = phi + L/r/r*dt
p = p +(LxL/r/r/r - 15%k/r/r - 45+L*L/r/r/r/r)*dt

}

This concludes the overview. The devil is in the details.

