
Ideas for the bouncing ball model 

• Free fall 

This bit is really simple, the only force is gravity.  Therefore: 
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Here I have defined down, i.e. towards the ground to be the positive direction.  I’ll stick to this 

throughout. 

• Ball has hit the ground and is busy compressing 

When the ball comes into contact with the ground, it experiences two additional forces: the one is a 

damping force that is always directed opposite to the velocity, the other is the spring force.  For this 

part of the derivation, the spring force opposes motion as the ball is being compressed.  The 

damping force always opposes motion.  The equations are: 
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Here, we define k to be the spring constant, b to be the damping coefficient and r to be the radius of 

the ball.  Since the term on the right hand side of the equals is a constant, I shall replace it with K, 

yielding 
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This differential equation can now be implemented using integrators and summers in Simulink. 

The question now is how do you work out k and b.  Since k is a spring constant, it can probably be 

worked out using the equipment at the Civil labs, which I think we have done.  It is a little harder to 

work out b though. 

The damping in the system represents an energy loss.  Therefore, the energy before the ball collides 

with the floor will be greater than the energy when it leaves the floor.  The energy is calculated from 

the velocity and therefore, the velocity after the collision must be smaller than the velocity before 

the collision.  This doesn’t help much as the velocities are difficult to determine. 

If we go back to the equations for the free fall motion, one can see that it should be possible to 

determine the initial velocity �� if the maximum height that is achieved in that bounce is measured.  



The problem with this approach is that we need to know the time that the ball took to reach that 

height. 

This little problem can be circumvented when we observe that we can use the second and third 

equations presented under the free fall section.  We would use �� � 0, �� � � and � � �, where h is 

the height that the ball reached in that time.  This leaves the time taken and the initial velocity (��).  

If we solve the equations simultaneously, then we should be able to get the initial velocity and 

eliminate time. 

Hopefully, this initial velocity can be inserted into the equations for damped motion as a end 

condition.  I am not sure how this will generate an answer though.  This doesn’t seem too promising 

though.  The alternative is to investigate solving the differential equation for �.  I’ll use the same 

method we used in ETN2B. 

The forced response is easy enough.  First rewrite the equation: 
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Then assume the solution for the forced response is � is constant.  It is easy to see that the answer is 
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I have called it B because I need some constant to make future equations easy. 

The natural response comes from using the differential operator �: 
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The solutions for � are: 
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Since k and m are always positive, we only have real unequal roots.  This corresponds to the over 

damped case.  But what do we do with this now?  The form of the solution � is 
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The next step is to use the initial conditions of the system (t=0) to calculate A1 and A2.  The problem 

is that we also have to solve for �, giving us three variables and two equations.  The initial position is 

known.  The velocity is not precisely known, unless we try to measure it, but it can be deduced, like 

the final velocity is. 



A possibility to investigate is using the other set of known points, viz. the final conditions.  The time 

is not known but the velocity and position are known.  This gives the small problem of adding two 

exponential functions to the whole mess. 

Another possibility is to look at energy constraints.  The damping force represents a loss in kinetic 

energy for the ball.  Since, with the damping included, we have a closed system, the change in 

kinetic energy of the ball can only occur if some force does work on the ball.  The spring force alone 

cannot cause this. 

If we only had the spring force, the system would be a simple harmonic oscillator and the velocity 

entering the collision would equal the velocity leaving the collision.  Therefore, the work done by the 

damping force must equal the change in velocity.  I shall call the initial velocity ���.  To simplify the 

integration, I will also only work with half of the journey, i.e. integrating from the start of the 

collision to the point where the velocity is zero, which is at ��. 
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Now comes the questionable math. 
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At this point, I am stumped by �� which would need to be measured.  This is very difficult because 

the ball only comes into contact with the floor for a short period of time and, judging by how difficult 

it is to squash it, it probably doesn’t deform all that much. 

• Ball has reached its maximum compression and starts expanding again 

At this point, the ball has zero velocity.  The damping will continue to oppose motion but the spring 

effect in the ball will now aid motion.  Therefore, gravity, as always, points down.  Velocity and the 

spring force both point upwards.  The same equations that were developed above can be used.  The 

����  term will now become positive, indicating a force pushing downwards, which is as was 

expected.  The formulas that include damping are only used when � , �. 


