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Let h be the distance from the origin to the oblique face defined by: h1, h2, h3 

Let n be the unit vector normal to that face. 

The vector, n, can be expressed as 

1 1 2 2 3 3n n n  n e e e  

Thus the components are 

k

k

h
n

h
  

 

Now I need two more vectors 

RED VECTOR: 1 1 2 2h h e er  

BLUE VECTOR: 2 2 3 3h h  e eb  

 

The area of the green triangle is one half the magnitude of the cross product of the red and 

blue. 
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Next, we would like the volume of the tetrahedron.  In all four cases, it will be the face area 

times the height. 
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In addition, the areas of the three faces in the Cartesian plane are 
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Now begin with  
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Next, I need a better expression for the unit normal to A. 

Begin with the cross product we found and normalize it. 

 

2 3 1 1 3 2 1 2 3h h h h h h   Cross e e e  

Now normalize the cross to get the vector, n 
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But choose the positive out 
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Now revert back to the Area 
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But we found   
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Thus 
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We can now return to   1 1 2 2 3 3
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We can pull out one 
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And we find 
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And that is the direction cosine to give the area formulas 

 

 

 

  


