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Abstract

As one important form of market circuit breakers, price limits have been often
imposed in stock and futures markets. This paper considers modeling the return process
of such assets, focusing on the treatment of price limits. As a result, a censored-GARCH
modelis formulated and a Bayesian approach to this model is developed. An application
is provided to Treasury bill futures over a period of high volatility and frequent limit
moves. The impacts of price limits are demonstrated with the real data and confirmed
with a simulation example.
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1 Introduction

The excess volatility of financial markets has drawn much attention over the past decade. An
early and serious consideration of this issue was initiated immediately after the stock market
crash in October 1987. As a result, the Brady commission (1988), along with several other
commissions and exchanges, recommended setting up circuit breakers in financial markets
to attenuate their excess volatility. As one important form of circuit breakers, price limits
have been imposed in many financial markets, such as stock markets in Austria, Belgium,
France, Italy, Switzerland, Spain, Japan, Korea and Taiwan; commodity futures exchanges
of corn, oats, soybeans, wheat, cotton, gold and silver in the United States; and financial
futures exchanges of foreign currencies, US Treasury bonds, notes and bills.

What have we learned about price limits from the literature? In a theoretical domain,
Kodres and O’Brien (1994) argued that price limits are Pareto efficient if the implementation
risk, a form of market incompleteness, is considered. For futures contracts, Brennan (1986)
concluded that price limits are a partial substitute for margin requirements, alleviating the
overall cost of trading and reducing the risk of contract default. In an empirical domain, there
has been a large amount of research associated with price limits. Using a cross-sectional data
analysis, Kim and Rhee (1997) provided empirical evidence on the claim that price limits
spillover volatility, delay price discovery and interfere trading. On the other hand, a critical
issue involved in the other existing empirical studies is how to model the return process of
such assets, which has not been properly studied in the literature and is the focus of the
current study.

More specifically, this paper considers modeling the return process of such assets, fo-
cusing on the treatment of price limits. A censored-GARCH model (GARCH: generalized
autoregressive conditional heteroskedasticity) is formulated and a Bayesian approach to esti-
mating this model is developed. A salient feature of this model is its ability to fully capture
the constraints on consecutive unobserved equilibrium returns implied by price limits, which
distinguishes this article from the existing others. This feature brings a challenge to the
estimation of this model. Consequently, the proposed Bayesian approach represents one of
the major contributions of this article.

Early empirical work relating to price limits was seen in Hodrick and Srivastava (1987)
and McCurdy and Morgan (1987). In their studies, price limits were either ignored or deleted.
Ignoring price limits means that the observed market price is taken as if it was the equilibrium
price in the event of a limit move. Deleting price limits is to drop the limited prices from
the studied sample. Such treatments can result in negative consequences. As pointed out by
Wei and Chiang (1997), the standard deviation for Japanese yen futures during 1977-1979
is underestimated by 5.7% when price limits are ignored, and by 14.3% when price limits
are deleted. The underestimated volatilities resulted in an underpricing of approximately
10% and 21%, respectively, for an at-the-money call option defined on the Japanese futures,
when the option has one year to maturity.! In addition, deleting limited prices breaks down
the dynamic structure of a price series, and is therefore not recommended. With a fairly
significant number of price limit moves, this paper demonstrates that price limits result in
the thin-tailedness of the returns of such assets and distort the tail behavior of the returns.
These findings are consistent with the results obtained by Yang and Brorsen (1995) for pork
bellies futures.

'For a reference of futures options, see Hull (1997, pp 273-280).



Another strategy adopted by McCurdy and Morgan (1987) is to lower the frequency of
sampling — weekly on Wednesdays. In general, this strategy may fail because price limits
can happen on any trading day. In addition, this reduces the sample size substantially and
thus lowers the statistical precision (see Sutrick (1993)). Conventional data aggregation can
be more harmful to making statistical inference since it introduces bias in the aggregated
data before any statistical inference is conducted. Recently, Wei and Chiang (1997) took a
rather different approach, in which daily price data were converted into irregularly spaced
ones: accumulating consecutive unobserved equilibrium returns and treating the multi-day
return as a single unit. The success of this conversion is based on the fact that the ob-
served accumulated holding return is identical to the (unobserved) accumulated equilibrium
holding return. Two limitations in their approach appear immediate: (1) it relies on the
assumption that price limits place no impact on the underlying (equilibrium) asset’s price-
generating process; and (2) it is hard to extend their approach to the case of conditional
heteroskedasticity.

Two studies by Kodres (1988, 1993) took an important step towards a formal treatment
of price limits in the context of econometrics. Although she intended to examine whether
price limits affect the testing of an unbiasedness hypothesis in foreign exchange markets,?
the key idea of her modeling is quite useful: limited prices are treated as censored variables.”
This is understood because when a price limit is reached, the equilibrium price is no longer
observable and is beyond the reached limit. Kodres (1988) developed a censored regression
model with a lagged latent dependent variable, that was recently developed into dynamic
Tobit models by Lee (1997) and Wei (1997). Taking account of conditional heteroskedas-
ticity, Kodres (1993) renewed her previous model and formed a model that later led to the
development of Tobit-GARCH models (see, Lee (1997) and Galzolari and Fiorentini (1997)).*
The main conclusions of her two papers are the same: price limits do not significantly affect
the testing of the unbiasedness hypothesis. From a modeling point of view, however, Kodres
(1988, 1993) failed to provide a proper structure of censoring for returns. The censored-
GARCH model formed in this paper results from the realization of this problem.

Morgan and Trevor (1997) criticized the estimation technique proposed by Kodres (1988,
1993) in two aspects: (1) selective use of forward price approximation of futures price from
covered interest rate arbitrage and (2) numerical complexity. Using forward price approxima-
tion likely distorts the variance estimates of the parameters since the uncertainty associated
with the unobserved equilibrium futures prices is about to be ignored in this treatment. In
addition, the approximation treatment is not a sensible method since for some other assets,
the forward approximation may not exist at all. The numerical computation in Kodres’ esti-
mation method can immediately become practically impossible with the dimensional increase
of consecutive unobserved equilibrium prices. Morgan and Trevor (1997) developed a Ratio-
nal Expectation (RE) method, similar to the approach by Calzolari and Fiorentini (1997),
for the estimation of Kodres’ (1993) model. Lee (1997) studied a Tobit-ARCH (GARCH)
model with the simulated maximum likelihood (SML) method. Although these methods
might be fairly easily extended to dealing with a normal version of the censored-GARCH

2The unbiasedness hypothesis studied by Kodres (1988, 1993) can be stated as whether today’s futures
price is an unbiased predictor of tomorrow’s spot price.

3The original idea of dealing with a censored regression model is attributed to Tobin (1958).

“There is no standard notion for the Tobit-ARCH (GARCH) model. Lee (1997) named it the ARCH
(GARCH)-Tobit model and Calzolari and Fiorentini (1997) called it the Tobit-ARCH (GARCH) model. In

this paper, I follow the notion of Calzolari and Fiorentini.



model, they cannot compete with the proposed method in this paper on the flexibility of
choice of thin/fat-tailed conditional error distributions.

A few additional advantages associated with the developed Bayesian method are in order:
(1) it is natural and convenient to deal with linear constraints (including truncations as a
special case) on both the model parameters and the latent dependent variables; (2) it is
flexible to both prior and likelihood specifications; (3) it provides finite sample inference
results because it is Bayesian; and (4) it is straightforward to code and implement.

The proposed model and estimation method are applied to Treasury bill futures over
a period of high volatility and frequent limit moves. It is found that ignoring price limits
results in large distortion on the posterior distributions of the model parameters. This is
especially true for the tail-thickness parameter. A simulation example confirms the point
and further shows that the censored-GARCH model is indeed a proper description for the
asset returns subject to daily price limits. Both the real and simulated data indicate the
substantial deviation of the posterior distributions from the normal family.

The remainder of this paper proceeds as follows. Section 2 proposes a censored GARCH
model and Section 3 develops a simple and practical posterior estimation method for the
model. Section 4 offers an application of the model and the method with T-bill futures data
and Section 5 provides a simulation example to confirm the impacts of price limits reported
in Section 4. Conclusion is given in Section 6.

2 The model

This section models the return process of assets when price limits are present. Two notions
of both price and return are distinguished and linked. As a result, a censored-GARCH model
is formulated. The prior specification of the model parameters is also discussed.

Usually, daily price limits are set at the previous-day’s (closing) price plus and minus a
constant, say a.®> When a price limit is hit, the observed market price being equal to the
limit deviates from its equilibrium value. It is crucial to distinguish them in the current
study. Let pf and p; be the market equilibrium and observed prices at time (i.e., day) {,
respectively. They are linked in the following non-linear fashion:

pi-1+a if pf>piog+a
pe=19 Pi if p1—a<pl<pi1+a . (1)
pio1—a it pf <piy—a

In words, the intrinsic value of the price, p}, can be observed only if it stays in a predetermined
symmetric band (p;—1 — @, pi—1 + a). The structure linking p; and p; resembles the one in
the literature of limited dependent variables models (See, for example, Tobin (1958) and
Maddala (1987)). If a (conditional mean) dynamic structure is imposed in the process of
pr, a dynamic Tobit model for p; can be immediately formed. (For a detailed discussion of
dynamic Tobit models, see Lee (1997) from a classical point of view and Wei (1997) from a
Bayesian point of view.)

However, most empirical work in finance inclines to model return rather than price itself
for three reasons. First, return is a complete and scale-free summary of the investment oppor-

5Tt is stressed that the model proposed in this paper can be easily adapted to the more general case in
which a is a (conditional) deterministic process.



tunity. Second, traders are mainly concerned about their investment returns. Third, return
has more attractive statistical properties than price, such as symmetry and stationarity.

In a setting without price limits, the conversion of prices into returns is straightforward.
However, caution must be exercised when price limits exist. Define r; = Inp; —Inp;_, and
ry = In p; —In p;_1 which are the continuously compounded, equilibrium and observed returns
of the asset, respectively. With some simple algebra, it is easy to prove that the two returns
are related as follows,

Et lf Tzf —|— LOt_l 2 Et
re=2% r;+LO; if ¢, <ri+ L0 <¢ (2)
gt lf T;f —I‘ LOt—l S Qt

where ¢, = In(1 — pta_l), ¢ = In(1 + ]ﬁ) and LO;_1 = In(p;_,/pi—1). Both ¢, and ¢ are
contained in the econometrician’s information set at time ¢ — 1. It might be worth pointing
out that using continuously compounded return is computationally more attractive than
using simple return in current circumstances.

To understand the structure (2), the term LO;_; in it deserves a detailed discussion.
From its definition, this term captures the unrealized return due to price limit move at time
t — 1. It was called a leftover term in Yang and Brorsen (1995). From a pure statistical
point of view, if LO;_; is always zero, the structure (2) is indeed the same as that in a
two-limit Tobit model. Obviously, LO;_; cannot be always zero in this case. Thus the
censoring structure of a Tobit model is a misspecification for the asset returns. Essentially,
this distinguishes my model from the ones used by Kodres (1993) and Morgan and Trevor
(1997). A further interpretation of the leftover term is facilitated by the following concept.

Definition 2.1: A price limit string is a sequence of consecutive limited prices that imme-
diately proceeds and follows an unlimited price, or a price without the imposition of price
limits.®

At any non-limit move time ¢, LO; is equal to zero by definition. Certainly, p; does not
belong to any price limit string. Now suppose {pf ,,pi .- ", Pip,} is a price limit string,
which means that all pj,. ( j = 1, 2, ---, 7) are unobserved and both p; and p;y,41 are
non-limit prices. The subscript 7 is the length of the price limit string. It is then easy to
derive

_ * * * ) )
LOw; = rig+riat 4y = (rag +reg-n 0+ rea)

= ZZZI(@H — Teti)
for all j (1 <7 < 7). This says that LO;y; is the accumulated unrealized returns starting
from the beginning of the price limit string to now (i.e., t + j). It is thus understood that
the structure (2) is a censoring structure for the asset returns, though it is different from the
censoring structure of a Tobit model. If an upper (down) price limit is hit at time ¢, then
LO; > (<)0. According to the above expression of LO.y;, the following constraints for the
equilibrium returns in the price limit string

J * J o * 4
i=1 T4y > Yoy regsdf Py > Pt
J * J : *

D et L <o df Piy; < Pitj

(3)

S1f a sample starts with a limit move, the first price limit string then begins with the first price observation.
Similarly, if a sample ends with a limit move, the last price limit string terminates with the last price
observation.



must be true for any j (1 < j < 7). In addition, the following equality constraint holds
obviously
A T e TR S Sy UURTE SEEE S ST (4)

These constraints imply that although the equilibrium returns in a price limit string are un-
observed, they do stay in a constrained region. Furthermore, the inequalities in (3) and the
equality in (4), plus LO; = 0 if p; is not a limited price, are equivalent to the censoring struc-
ture (2). At this point, it can be easily proved that given an initial unlimited price
p1, the censoring structure (1) for the asset prices is equivalent to the censoring
structure (2) for the asset returns. One implication of the emphasized statement is
that the censoring structure of a Tobit model for the asset returns is not equivalent to the
censoring structure (1) for the asset prices.

To model the process of the equilibrium return r}, the ARCH literature is followed. The
ARCH model has been extensively studied since its introduction by Engle (1982). Bollerslev
(1986) generalized it to GARCH models, which have proven attractive for the returns of most
financial assets. The crux of these models is their ability to capture volatility clustering. Both
Kodres (1993) and Morgan and Trevor (1997) followed this idea. For simplicity, this paper
takes a parsimonious GARCH(1,1) model for the equilibrium return r}, which is given by

1=t eVhE, GlF~ GED

. . (5)
hy =w+ ahi_ 1(67: 1) + Bhi_,

where the innovation e} is orthogonal to all the available information at time t-1, Fi_y;
following Nelson (1991), e;|F;_; is assumed to have the generalized error distribution (GED)
with zero mean and unit variance;” the parameters governing the volatility function satisfy
the typical restrictions: w > 0, & > 0 and 8 > 0. The initial volatility h} is assumed to be
a known constant. The parameter p is the one-period, continuously compounded return on
the risk-free security. The density function of a GED random variable normalized to have a
zero mean and unit variance is
Ll
v ( 2 ) — <z <X

JG) = S 5 (6)

where

A= 27 (1/0) )73/,

and 7 () is the gamma function. Parameter v determines the tail-thickness of the density
function and can take any value in the interval (0,400). The standard normal density
function is the special case of v = 2. For v > 2, the density function has tails thicker than
the normal density and for v < 2, the fat-tail phenomenon occurs. Use of the conditional
GED in this study can be justified by two arguments. First, the evidence reported in the
later sections of this paper shows that (observed) asset returns subject to price limits appear
to have thin-tails rather than fat-tails and the conditional GED allows for the flexibility.
Second, even though conditional equilibrium return can have fat tails and conditional t-
distributions have been widely used by some researchers, Duan (1997b) pointed out that
use of conditional t-distributions for modeling continuously compounded return implies an

"See Harvey (1981) and Box and Tiao (1973). In Box and Tiao (1973), this distribution is called the
exponential power distribution.



unbounded expected simple asset return. Thus t-distributions are not a sensible choice in
this situation. I call the model consisting of (2) and (5) a censored-GARCH model in order
to distinguish it from a Tobit-GARCH model.

It should be noted that the choice of GARCH(1,1) parameterization of the equilibrium
asset returns is by no means crucial for the applicability of the developed estimation method
in this paper. For example, ARCH (Engle, 1982), GARCH (Bollerslev, 1986), EGARCH
(Nelson, 1991), NGARCH (Engle and Ng, 1993), and GJR-GARCH (Glosten Jagannathan
and Runkle, 1993), or more generally the Augmented GARCH(p,q) model (Duan, 1997b)
can all be readily taken and the so-formed censored models can be uniformly dealt with by
the estimation method proposed in this paper.

In order to proceed with a Bayesian approach to estimating the censored-GARCH model,
a prior distribution of the model parameters must be specified. Let § = {y, w, o, 3,v}. The
prior distribution of # is specified in an improper fashion as

p(0) o constant
where®
p € (=00, +00), we(0,+o0), a€(0,1), B€(0,1) and v € (0,+00).

No further difficulty will be added to the estimation procedure proposed in the later sections
if the weak stationarity constraint a + 3 < 1 is imposed. From a practical point of view,
this improper prior can be replaced by the following proper prior,

p(0) = p(p)p(w)p(a)p(B)p(v) (7)

where

p~U(=€1,6), w~U0,b), a~U(0,1), 8~U(0,1) and v~ U(n,n2)

and U(d1,02) denotes a uniform distribution in the interval (d1,d2); {&1, &, m1,1m2,b0} are
viewed as hyperparameters, indexing the prior distribution. As long as the values of &, &, 12
and b are large enough and that of 1, is sufficiently close to 0, the above two prior distribu-
tions amounts to representing the same prior information. The posterior estimations in this
paper are all based on the prior specification (7) with some variation in the choice of hyper-
parameters. It should also be indicated that the particular forms of the prior specification
do not matter with respect to the posterior computations in this paper due to the flexibility
of the method. Consequently, posterior estimations with more informative priors (including
the small values of the hyperparameters) turn out to be trivial exercises. The choice of the
hyperparameters is delayed to Sections 4 and 5.

3 The posterior approach

The likelihood function of the censored-GARCH model can be derived in a manner similar to

that in Kodres (1993) or Lee (1997) or Wei (1997). Overall, it is analytically intractable due

8 Although limited liability implies that the domain of g is [—1,+00), it is convenient and customary to
use (—oo, +00) for the domain. So far no negative consequence has been reported with the practice in the
empirical finance literature.



to the multiple dimensional integrals for the unobserved equilibrium returns, which prevents
any analytical solution of posterior distribution and moments of the model parameters. This
section develops a posterior estimation algorithm for the censored-GARCH model, based on
the griddy Gibbs sampler-data augmentation algorithm (Ritter and Tanner, 1992).

3.1 The griddy Gibbs sampler-data augmentation

The Gibbs sampler-data augmentation algorithm is a well known sampling tool in econo-
metrics. A brief review of this tool helps to introduce and understand the griddy Gibbs
sampler-data augmentation algorithm. The basic idea can be explained in the simplest ver-
sion of the tool. Suppose that the model parameters § can be decomposed into two blocks,
6 = (01,02), R is the vector of total observed returns r; , and r* the vector of total unob-
served equilibrium returns r; due to price limit moves at time ¢ and/or ¢t — 1. If the complete
conditional distributions

(91|{(92,T*,R}, (92|{(91,T*,R} and T*|{(91,(92,R} (8)

are all in standard forms (for instance, normal and gamma distributions) from which random
numbers could be easily sampled, then the Gibbs sampler-data augmentation algorithm is to
iteratively draw from these conditionals. As the number of draws grows large, the draws so
obtained converge in distribution to that of the joint posterior distribution of the parameters
f and the unobserved returns r*. (For references, see Gelfand and Smith (1990) and Tanner
and Wong (1987).) What if the conditional distributions are in non-standard forms? A
(more) numerical version of the Gibbs sampler-data augmentation algorithm was developed
by Ritter and Tanner (1992).? One can evaluate each conditional distribution over a grid
of points and then generate a draw from the simulated conditional distribution by inverting
it at a value sampled from the uniform distribution in (0,1). A detailed description of the
procedure is given in the Appendix. The implementation of this procedure requires that
each conditional distribution be one-dimensional since it is the case in which the above-
mentioned numerical evaluation can be conveniently proceeded. The posterior estimation
is then straightforward with the simulated posterior draws (see a detailed discussion by
Bauwens and Lubrano (1998)). The convergence of each posterior Markov chain can be
easily checked by using the visual inspection of CUMSUM statistics proposed by Yu and
Mykland (1994). A standardized version of the statistic can be written as, with N draws of
a Monte Carlo Markov chain (",

1
7 ST — ) /oy, for t = 50,100,150, ..., N

n=1

CSt:(

where py and oy are the empirical mean and standard deviation of the N draws. If the
MCMC chain converges, then the plot of C'S; against time ¢ should converge smoothly to
zero. On the other hand, a long and regular excursion plot of C'S; indicates the absence of
convergence of the chain. Bauwens and Lubrano (1998) refined the idea by introducing an
e—band for C'S;. If C'S; remains in the e—band (around zero) for all ¢ larger than K(¢), then
0™ has converged after K(¢) draws for the estimation of the posterior mean with a relative
error of 100 x € percent.

°They did not consider the data augmentation, but it adds no more difficulty if the data augmentation
1s incorporated into their method.



3.2 Conditional distributions

This subsection focuses on the derivation of the complete conditional distributions of the
parameter # and the latent returns r*. I begin with the “latent likelihood function” of the
model, i.e., the sampling distribution of the total equilibrium returns R* (R* can be viewed
as the union of R and r*). Because R* is not fully observable, I use the word “latent” to
capture the essential idea. The latent likelihood can be easily written as

I P S (=307 = w/AWET
w, o =
e =1 VR (1/v)

where hf = w + ahi_(€;_,)* + Bhi_,. The “latent posterior distribution” is defined ac-
cordingly, i.e., the latent likelihood function multiplied by the model prior (see (7)). The
conditional posterior distributions of the parameters have the following density kernels

| (9)

Texp | |(rf — ) /AR |
plw, o, B, v, B* ~ = G < p <&,
| t=1 ht ' ’
exp |~ 4| = w)/AWET[]
wlp, a, B, v, R ~ = 0 <w<b,
| t:Hl 0
exp |~ 4| = w)/AWET[]
olp,w, B,v, RY ~ = 0<a<l, 10
| 1 Vi o
exp |~ 4| = w)/AWET[]

ﬁ|/,L,CU,Oé,I/,R* ~ H \/h_* 0§ﬁ<17
t

vesp |~ 4| = w)/MWE| |
A2UHL/v7 (1 /1)

T

vipw,a, B8, BT~ H 0<v<+oo.
The conditional distributions seem to possess the same form, but they are viewed rather
differently because each of the variables conditions on all the others. Obviously, they are all
in non-standard forms, which motivates the use of the griddy method.

Now consider the conditional distribution of the latent data as required in the data
augmentation step discussed above. A corresponding concept to price limit string is now
defined for returns.

Definition 3.1: A latent (return) string is a sequence of consecutive unobserved returns
that follows and proceeds immediately an uncensored return.

Unlike in a dynamic Tobit model, the unobserved returns conditioning on the model pa-
rameters and all observations are not independent across different latent strings. This is easily
seen from the kernel of the conditional density of the latent returns ry ,,---, 7, {0, B* —

{rf_l_l, e ,rf+nt}} in a latent string {rf_l_l, e ,rf_l_nt}

exp {—% ‘(rH—nt-I—l - M)/)‘\/mm ﬁ exp {_% ‘(Tf B M)/)\\/@H (11)

where n; is the length of the latent string. The first term in this density kernel shows up

because iy, ., is a function of the latent return r;,  according to the model specification

9



(5). The unobserved returns in this latent string are linked to those in the past latent strings
through the volatility function 7. If the volatility function is determined by observed returns
rather than unobserved returns, the latent returns in this latent string conditioning on the
model parameters and all observables are conditionally independent of the latent returns in
other latent strings. In this case, the joint density of all latent returns can be written as the
product of the density of the latent returns in a latent string over all such strings. This is
analogous to the case of a dynamic Tobit model as discussed in Wei (1997). As a result, the
data augmentation step becomes simpler.

Notice that the censoring structure (2) implies the constraints (3) and (4) for the latent
returns. Thus the distribution of the latent returns in a latent string, conditioning on all the
model parameters and other latent returns and observables, turns out to be (11) subject to
the constraints (3) and (4). It is interesting to see that a change-of-variable technique can
solve the sampling problem nicely. Set

1 0 tee 0 TI_I_I Ti41
11 0 rr—l—? _ Ti42 (12)
1 1 Cee 1 r?ﬂ-nt Litny

where the coefficient matrix is of a lower triangle. The reason for making the transformation
is that the transformed variables have simple and neat forms of constraints, and are easier
to be sampled. According to the change-of-variable technique, it is easily confirmed that
the density kernel of the transformed random variables x;y1, x¢12, -+, 41, has the following
form

exp {_% ‘(Tt+nt+1 - M)/)\\/ht+nt+1‘y} ﬁ exp {_% ‘(xt-l-j = L1 — M)/)\\/htﬂ“y} (13)
V1 i=1 \/fTﬂ

where the determinant of the Jacobian of the inverse transformation of (12) equals 1,

hipr = w+a(ry—p)* + Bk
hive = w+oxyr — M)2 + Bhipa
ht-l—] = w+ a(xt+j—1 — Tqj5-2 — /“L)2 + ﬁht+]—1 .] = 3747 Ty Ty + 17

z110 = 0 (for notational convenience), the constrains (3) and (4) are easily transformed into

wH‘j 2 ZZ:I L lf pr—l—] 2 pH‘j (14)
Tyt < 2521 Tt4i if p;;—|—j < Pt+j
for 1 <j < nyand
Tt *
Ltdn, = Zi:l Tige (15)

The equality constraint allows one-dimensional reduction of the random vector to be sampled.
Set

J e J e
Ay = {$t+y‘|$t+y‘ > Z¢:1 e if Piy; > prvj and @y < Z¢:1 Pegq il Piy; < pt+j}

10



where j = 1,2, -+, n;—1. Then the sampling problem becomes to draw x4 y1, 12, -+, Trap,—1
from the following truncated distribution

P {_% ‘(rtJ’”tH — 1/ Ay ht*”f“‘y] nﬁl exp {_% ‘(xt-l-j — i1 — M)/)‘\/EH 7
\ Prtnt j=1 \/}Tﬂ (e €Ay}

(16)
where [ is an indicator function. After drawing sy1, @442, , T44n,—1 from the kernel (16),
the draws of rj ,,---,r},,, can be easily obtained by using the inverse transformation of

(12). The above discussion is summarized as follows.

Summary: For the censored-GARCH model, the equilibrium returns in a latent string
Tig1s s Tiyn, can be sampled as follows, for the data augmentation step,
- step I: transform the equilibrium returns into @41, Tiy2, -+, Teyn, by using (12).
- step 2: sample the variates xyy1, T412, -+, Tyipn,—1 from the truncated density kernel
(16).
- step 3: transform the draws of x4y, Ts42, -+, Zy4n,—1 into the draws of ri .-+ rj,
according to (4) and (12).

Because (16) is still in a non-standard form, the vector {@s41, ¥4ya, -+, Togn,—1 ) needs to
be further partitioned into n; — 1 univariate variables and the kernel of the distribution of
each univariate variable x4 ; is

exp {_% ‘(rt+]+1 - M)/A\/M‘” _ % ‘(th_l_j — Typjo1 — M)/)\\/EH [
\/m {@e4; €445}

where hyy; is defined above. This non-standard density kernel again motivates the use of
the griddy method.

So far, all the full conditional density kernels of the model parameters and latent data
have been derived. The posterior output can be now obtained by applying the griddy Gibbs
sampler-data augmentation as given before.

(17)

4 An application to Treasury bill futures

This section considers an application of the proposed model and estimation method. The
data contain the prices of the 3-month US Treasury bill (T-bill) futures and price limit
dates.'® The background and description of the data are briefly discussed, a preliminary
analysis is conducted, for the sake of comparison, two other models, namely a GARCH (1,1)
model and a Tobit-GARCH model, are also introduced, and then the posterior results of all
the models are reported and compared.

4.1 Background and data

The contract of the 3-month T-bill futures was first introduced in January, 1976, at the In-
ternational Monetary Market (IMM), a division of the Chicago Mercantile Exchange (CME).

It has been playing a major role in hedging short-run interest rate risks. So far, it is the most

10The data are provided by I.G. Morgan.
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heavily traded instrument among all interest rate futures. The sample spans from October
1, 1979 to October 29, 1982, which represents a special episode in the history of the Federal
Reserve System (the Fed). It is well-known that during the period, the Fed adopted a mon-
etary operating procedure that was aimed at combating a non-tolerable inflation rate. This
so-called monetarist-advocating strategy is to control money supply so that interest rates
were allowed to adjust more freely. The direct impact of the Fed’s strategy on the T-bill
futures was the high volatility in the futures market during the whole period (see Figure 1).

As documented in International Monetary Market Yearbook (1983, p52), during the
sampled period, the daily price limits in the futures market were regulated at the levels of
50 basis points above or below the previous day’s settlement price before June 19, 1980 and
then raised to those of 60 basis points. The price limit moves of the first deferred contract
of the T-bill futures are 57 days. Figure 2 plots the daily prices of the futures contracts and
their reached limits (with the symbol x) against time. The ratio of price limit days to total
observations is 7.3%. Of 57 limit days, 18 are two-day consecutive limit moves in the same
direction and 2 occurred in the opposite direction.

4.2 Preliminary analysis

The time series plot of the T-bill futures returns is displayed in Figure 1 in which volatility
clustering of the returns is easily confirmed. The sample statistics of the data are reported in
Table 1. It is noted that the excess kurtosis of the observed returns is negative (—.39), which
seems to suggest a contradiction with the well-known fat-tailed phenomenon. However, if
price limits are taken into account, I argue that this contradiction can be easily reconciled.
First, price limits prohibit extreme returns by restricting large movement of prices. As a
result, this reduces the excess kurtosis of the observed returns, meaning that the observed
returns can be thin-tailed even if the equilibrium returns are fat-tailed.

Next, the appearing contradiction can be explained with an examination of the (uncondi-
tional) density of the observed returns. This density is unknown, but can be easily estimated
in a simple non-parametric fashion. A kernel estimation method is adopted and the selected
kernel is given by

K(u) = %(1 —u?)?I(Ju] < 1). (18)
This is the typical Biweight kernel. The bandwidth is taken as 2.787~ %6 where T is the
sample size and ¢ is the sample standard deviation of the observed return r; (For a reference,
see Silverman (1986)). The bandwidth is selected based on the widely-used criterion of
minimizing the approximate mean integrated square error, under the assumption that the
“true” distribution of the observed returns r; is normal (see Silverman (1986, p. 40)). The
density estimate (solid curve) as well as a simulated normal density (dotted curve) are
depicted in Figure 3. The normal density serves as a reference point, with the same mean
and standard deviation as those of the observed returns. At first glance, it is surprising
that two humps appear on the tails of the estimated density. It is found that they are quite
robust with respect to alternative choices of bandwidth, as long as the bandwidth is not too
large. What generates the humps? The answer is price limits, simply because price limits
affect (both positive and negative) large returns which are located in the two tails of the
estimated density. Now, it is easy to understand that the tail behavior of the estimated
density of the observed returns is consistent with the negative excess kurtosis of the return
sample. Furthermore, a comparison between the two densities in Figure 3 suggests that
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the equilibrium returns of the futures contracts have a fat-tailed unconditional distribution
because these returns are not restricted by price limits and have the same behavior as the
observed returns when tails are ignored. At this point, hopefully it is convinced that price
limits should be neither ignored nor deleted.

4.3 Two other models

It may be interesting to compare the estimation results of the censored-GARCH model with
those of two relevant models. For the purposes, first consider a GARCH(1,1) model for the
observed return r;, which represents the ignorance of price limits,

re = p+ehey, €| Fioi ~ GED

(19)
he = w4 ahi_1(e-1)? + Bhi—q

where all the notations here are the same as in Section 2, ¢|F;_; has zero mean and unit
variance and the typical restrictions on the volatility parameters are satisfied: w > 0, > 0
and 3 > 0. It is noted that this model is the same as the model (5) except that here r,
is naively treated as an equilibrium return. If this naive treatment is inappropriate, then a
significant difference between the posterior results of this model and the censored-GARCH
model should be observed.

Next consider Kodres’(1993) Tobit-GARCH model, with the replacement of a (condi-
tional) normal error term with a conditional GED error term, which can be generally written
as

¢ if rr>¢
=< il ¢ <ri<e¢ (20)
¢ if ry<g

and

= pt VR, GlF~ GED
hy =w+ O‘hf—1(ﬁf—1)2 + Bhi_,

where again the notations here are the same as in Section 2, €f|F;_; has zero mean and unit

(21)

variance and the typical restrictions on the volatility parameters are satisfied: w > 0, > 0
and 3 > 0. As discussed before, this model is a misspecification on the link between the
observed return r; and its equilibrium counterpart r} in certain time points. For instance, the
equality constraints on consecutive unobserved equilibrium returns (see (4)) are overlooked
in this specification. As a result, this increases the dimension of the unobserved equilibrium
returns in such a sample. On any single limit day ¢, Morgan and Trevor (1997) converted
the equilibrium price p} into two unobserved equilibrium returns r; and rj,,, leaving the
equality constraint on the two returns unconsidered. On any two consecutive limit days, say
t and ¢ + 1, the two equilibrium prices pf and pj,, were converted into three unobserved
equilibrium returns ry, ri ; and rj,,, with the ignorance of the equality constraint on them.
If the two day limits are in the same direction, rj ; was treated as a missing variable since
there is no information to constraint it in this treatment. The loss of information due to a
mistreatment of price limitsin a Tobit-GARCH model may result in an estimation distortion
of the model, or at least an efficiency loss of the estimation.
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4.4 Posterior results

This subsection reports and compares the posterior results of the three models, two of which
are given in the last subsection, and another of which is the censored-GARCH model, with
the T-bill futures data. The same prior specification (7) is applied to all the three models.
The hyperparameters are: & = & = .12, b = .35, 5, = 0.1 and 1y = 4.5. The choice of
the particular values for hyperparameters is not attempted to inject much prior information
into the analysis. Instead, it is made mainly based on computational efficiency, meaning
that further extension of the supports of these parameters would not significantly alter the
posterior results except that more computing time is involved.

Table 2 and Figure 4 present the posterior results. Two comments can be drawn from
them. First, both the censored-GARCH model and the Tobit-GARCH model suggest a
(conditional) fat-tailed distribution (v < 2) for the underlying equilibrium returns, which is
consistent with the fat-tailed phenomenon, while the GARCH model implies a (conditional)
thin-tailed distribution. This simply concludes that price limits should not be ignored be-
cause of the substantial difference in their data distributions. Second, the major difference
between the estimates of the censored-GARCH model and those of the Tobit-GARCH model
is reflected in the parameters of their volatility functions. Although it may not be easy to
judge how much the parameter estimates of the Tobit-GARCH model are distorted due to
the misspecification of the model, we can see that the variances of the estimated volatility
parameters are larger for the Tobit-GARCH model than for the censored-GARCH model.
This can be further confirmed in Figure 4 in which the posterior histograms of the parame-
ters for the three models are plotted. This is not surpring because the Tobit-GARCH model
introduces some additional uncertainty to the model estimation.

For the estimation of these models, I rescale the return data, multiplying 10 by them, so
that w needs to be divided by 10°, x4 divided by 10%. The modified version of the CUMSUM
evolution of the Monte Carlo estimates of the posterior means of the parameter for the
censored-GARCH model is displayed in Figure 5 (see the discussion in Section 3.1). The
error band € is chosen as .1. The plots suggest that to ensure the Markov chains of the
sampled parameters stay in the € — band, or converge in terms of the criterion discussed
in Section 3.1, the first 6000 draws must be dropped. The high cost of dropping so many
initial draws is due to the high correlation between the posterior parameters w and 3. The
Gibbs sampler-data augmentation retains next 4000 draws. Additional draws have been also
tried, but could not significantly improve the posterior results. I have also examined the
modified CUMSUM plots for all the posterior latent returns, but do not report them here to
save space. The program is coded in GAUSS and implemented in a Compucon Intel 430Hx
Pentium 200 PC. The CPU time consumed in the computation is about 12 hours with 10, 000
draws for the censored-GARCH model.

5 A simulation example

This section offers a simulation example to ground the findings obtained in the last section.
For the purposes, this example is designed to share certain major characteristics with the
real data studied in the last section so that it is easy to compare the results here with those
there.

Example 5.1: Let r} be an equilibrium daily return series generated from the following
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DGP,
r; =0+evhy,  €Foi~ N(0,1)

hy = .05/10° + .05h7_, (e;_,)* + .90R]_,
with the sample size 1000. The daily equilibrium price p; is initialized at pj = 90 and

(22)

constructed as follows,
pi = exp(lnpi_y +77)
where r} resembles a daily return used in the last section. The observed daily price series is

generated by
pir + A7 it pf > pg + 17

pe =13 P; if poy =17 <p; < poy + .17 (23)
pi1 — A7 it pr <pg — AT

where .17 is used to define daily price limits and is so selected to achieve roughly the same
number of limit moves as that in the application of the last section. The initial 200 simulated
prices are thrown away to reduce their likely effect and the rest of the simulated prices are
kept for this analysis. Thus the total number of price observations is 800. The number of
simulated price limit moves is 58, of which 3 pairs are two-day consecutive limit moves and
all others are single day limit moves. Recall that the observed and equilibrium daily returns
were defined in Section 2. To be comparable with the application in the last section, both
r, and 1} are rescaled by multiplying 10°.

Sample statistics of the simulated (observed and equilibrium) returns are reported in
Table 3. In this example, the excess kurtosis of the unconditional observed return r; is also
negative though the excess kurtosis of the equilibrium return r} is still positive. Obviously,
the negative kurtosis can only be caused by price limits in this circumstance. The interpre-
tation of the negative excess kurtosis in the last section is supported. Either a normal or
Student-t version of GARCH model cannot fit the fourth moment of r; since such models
imply a positive excess kurtosis of r;. The message behind this observation is that ignoring
or deleting price limits is indeed inappropriate.

The (unconditional) density estimation of the simulated return r; is conducted in the same
manner as that in the last section. For a reference, the (unconditional) density estimation of
ry (the data r; are available because they are simulated) is also presented. The estimated two
densities are displayed in Figure 6, with a simulated normal density. The normal density is
designed with the same mean and standard deviation as those of the sample r;. Similarly to
what we observed in the last section, two humps appear on the tails of the estimated density
of r; and they are quite robust with respect to alternative choices of bandwidth. Clearly,
they are induced by price limits because no hump arises in the estimated density of r}.
This confirms the major finding in the preliminary analysis of the last section and suggests
that price limits should be neither ignored nor deleted. In general, it is easily understood
that price limits may not always induce negative excess kurtosises of such samples, which
should depend on the relative number of limited prices. As the number increases, the excess
kurtosises of the samples would decrease.

Following what have been done in the last section, I also estimate the three models
there with the simulated returns r;. Table 4 and Figure 7 report the posterior results. It is
impressive that the results from the censored-GARCH model are better than those from both
the Tobit-GARCH model and the GARCH model. This is not surprising because ignoring
price limits makes the fourth moment of the data and the humps on the tails of the data hard
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to fit, and the Tobit-GARCH model misspecifies the observed return process. Interestingly,
the posterior estimation results and distributions here overwhelmingly confirm those in the
last section. For example, posterior draws of tail-thickness parameter v have a mean fairly
close to its true value 2 for the censored-GARCH and Tobit-GARCH models, but not for the
GARCH model. In addition, the information loss due to the Tobit-GARCH model reduces
the estimation efficiency of the model.

The implementation details of estimations of the three models are exactly the same as
those in the last section. They are not reported here, because with the true data generating
process known, it is easy to see the adequacy of the proposed method, and the accuracy of
the posterior results.

6 Conclusion

This paper has formulated a censored-GARCH model to describe the return process of the
assets subject to daily price limits. This model differs from a Tobit-GARCH model as
posted by Kodres (1993) and further studied by Morgan and Trevor (1997) in at least one
major aspect. While the censored-GARCH model implies a set of linear constraints on the
unobserved equilibrium returns required by price limits, a Tobit-GARCH model is not able
to fully capture these constraints and introduces some unnecessary uncertainty to the model
estimation.

Furthermore, this paper has offered a simple and practical Bayesian estimation tech-
nique for the censored-GARCH model, which is built on the griddy Gibbs sampler-data
augmentation algorithm (cf. Ritter and Tanner (1992)). Sampling from consecutive unob-
served equilibrium returns consists of the key part of this developed estimation technique. I
demonstrated that this sampling procedure can be nicely and easily implemented by using
a simple change-of-variable technique combined with the griddy method.

Several major advantages of the proposed estimation method are worth being summa-
rized. First, it allows for flexibility on both prior and model specifications. Second, it
provides a general and simple sampling procedure to draw variates from a distribution with
a set of linear constraints (A truncated distribution is a special case). Third, it can be easily
generalized to estimate other censored and/or non-linear regression models. Lastly, it is
straightforward to code and implement in almost all routinely-used statistical software.

An application study and a simulation example show the worthiness of the development
of the new model. A few main results have been derived. First, price limits can result in
negative kurtosis of the sample of the observed returns, though the distribution of underlying
equilibrium returns may still be fat-tailed. Second, price limits can distort the tail behavior
of the distribution of the observed returns, which may further explain why the sample of the
observed returns is thin-tailed (i.e., negative kurtosis). Clearly, it is hard, if not impossible, to
fit these important features of such data if price limits are ignored or deleted. Consequently,
this paper calls for a serious consideration of taking account of price limits in dealing with
such samples. Third, a Tobit-GARCH model would result in distortions because it is a
misspecification to the observed return process of the assets subject to daily price limits. In
particular, some additional uncertainty due to the model reduces the estimation efficiency
of the model. Therefore, the censored-GARCH model is strongly recommended for future
studies. Finally, both the real application and the simulation example delivered non-normal
posterior distributions of the parameters of the volatility functions, which is the strength of

16



the Bayesian estimation method in finite samples.

In an on-going research, I am making a comparison study of the performances of the
proposed estimation method, the possible extensions of the maximum simulated likelihood
method used, for example, by Lee (1997), and the EM method. I am also investigating the
financial and economic implications of price limits by using some variations of the model pro-
posed in this paper. The flexibility of the developed method should make this investigation
easy and convenient.
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Table 1: Sample statistics of T-bill futures returns
(rescaled by 1000) October 1, 1979 — October 29,1982

Sample Size Mean Std. Dev. Ske. FExcess Kurt. # of price limits
T 7 -.0037 0.75 .0416 -.39 57
Table 2: Estimation results of T-bill futures returns
Parameter

Model | 1 w « 16} v

GARCH | post. mean -.01 .06 .06 .83 2.50

post. std. dev. | (.03) (.06) (.03) (.12) (.32)

Tobit- post. mean .0 .05 .05 87 1.63

GARCH | post. std. dev. | (.03) (.05) (.03) (.08) (.18)

Censored- | post. mean .0 .03 .04 91 1.62

GARCH | post. std. dev. | (.03) (.03) (.02) (.06) (.18)

Note: w is multiplied by 10° and u by 10°.

Table 3: Sample statistics of Example 5.1

Sample Size Mean Std. Dev. Ske. FExcess Kurt. # of Limited Prices
ry 799 027 1.05 .001 .29
T 799 027 98 -.061 -.55 58
Table 4: Estimation results of Example 5.1
Parameter
1 w o ¢ v
Model | 0 .05 .05 .90 2.0
GARCH | post. mean .02 A8 .06 .76 3.04
post. std. dev. | (.03) (.12) (.03) (.12) (.46)
Tobit- post. mean .03 14 .06 81 1.80
GARCH | post. std. dev. | (.04) (.09) (.03) (.09) (.19)
Censored- | post. mean .03 A1 .05 .85 1.82
GARCH | post. std. dev. | (.04) (.08) (.02) (.08) (.19)

Note:

w is multiplied by 10° and p by 10°.
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Figure 5 CUMSUM plots of posterior means estimates
(Censored-GARCH model with the return of T-bill futures)
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Appendix
The algorithm of the griddy Gibbs sampler-data augmentation can be written as follows
for M draws:

- step I: initialize the chain at any value §() and r*(°) in the support of (8, r*) space.
- step 2 start the loop at n = 1.
- step 3: compute p((91|(9gn_1),r*(”_1),]%) over the grid ((i,(z,--+,(,) to obtain G, =

(p17p27 o 7pg)'
- step 4: compute the values G, = (0, ®5 -~ -, ®,) where

Ce
<I>Z»:/ p(010, 17, R)dO, i =2.3,--- .4,
¢1

and normalize the (G, to get the cdf values G,/®, of p(01|0§”‘1), r(=D R,
- step 5: generate u ~ U(0,1) and invert the cdf G,/®, to get a draw (9?1).
- step 6: redo step 3-6 for #, and each element of latent data r*.
- step 7: increment n by 1 and go to step 3 unless n > M.
- step &8 discard the initial m draws, and return all other draws.

In this algorithm, p(-) stands for the density function of the corresponding parameter or
one element of the latent data conditioning on all other information.

A few comments are worth mentioning for the implementation of the algorithm. First, the
choice of the grid of points is somewhat difficult and constitutes the main effort in applying
the method. A proper choice of the grid points often requires the exploration of the shape
of the conditional densities and a trial period. Second, the integration taken in step 4 can
proceed in various ways. For simplicity, this paper uses the Simpson rule. In step 5, the
inverse of the cdf is constructed by using linear interpolation.
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