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1 IntroductionThe excess volatility of �nancial markets has drawn much attention over the past decade. Anearly and serious consideration of this issue was initiated immediately after the stock marketcrash in October 1987. As a result, the Brady commission (1988), along with several othercommissions and exchanges, recommended setting up circuit breakers in �nancial marketsto attenuate their excess volatility. As one important form of circuit breakers, price limitshave been imposed in many �nancial markets, such as stock markets in Austria, Belgium,France, Italy, Switzerland, Spain, Japan, Korea and Taiwan; commodity futures exchangesof corn, oats, soybeans, wheat, cotton, gold and silver in the United States; and �nancialfutures exchanges of foreign currencies, US Treasury bonds, notes and bills.What have we learned about price limits from the literature? In a theoretical domain,Kodres and O'Brien (1994) argued that price limits are Pareto e�cient if the implementationrisk, a form of market incompleteness, is considered. For futures contracts, Brennan (1986)concluded that price limits are a partial substitute for margin requirements, alleviating theoverall cost of trading and reducing the risk of contract default. In an empirical domain, therehas been a large amount of research associated with price limits. Using a cross-sectional dataanalysis, Kim and Rhee (1997) provided empirical evidence on the claim that price limitsspillover volatility, delay price discovery and interfere trading. On the other hand, a criticalissue involved in the other existing empirical studies is how to model the return process ofsuch assets, which has not been properly studied in the literature and is the focus of thecurrent study.More speci�cally, this paper considers modeling the return process of such assets, fo-cusing on the treatment of price limits. A censored-GARCH model (GARCH: generalizedautoregressive conditional heteroskedasticity) is formulated and a Bayesian approach to esti-mating this model is developed. A salient feature of this model is its ability to fully capturethe constraints on consecutive unobserved equilibrium returns implied by price limits, whichdistinguishes this article from the existing others. This feature brings a challenge to theestimation of this model. Consequently, the proposed Bayesian approach represents one ofthe major contributions of this article.Early empirical work relating to price limits was seen in Hodrick and Srivastava (1987)and McCurdy and Morgan (1987). In their studies, price limits were either ignored or deleted.Ignoring price limitsmeans that the observed market price is taken as if it was the equilibriumprice in the event of a limit move. Deleting price limits is to drop the limited prices fromthe studied sample. Such treatments can result in negative consequences. As pointed out byWei and Chiang (1997), the standard deviation for Japanese yen futures during 1977-1979is underestimated by 5.7% when price limits are ignored, and by 14.3% when price limitsare deleted. The underestimated volatilities resulted in an underpricing of approximately10% and 21%, respectively, for an at-the-money call option de�ned on the Japanese futures,when the option has one year to maturity.1 In addition, deleting limited prices breaks downthe dynamic structure of a price series, and is therefore not recommended. With a fairlysigni�cant number of price limit moves, this paper demonstrates that price limits result inthe thin-tailedness of the returns of such assets and distort the tail behavior of the returns.These �ndings are consistent with the results obtained by Yang and Brorsen (1995) for porkbellies futures.1For a reference of futures options, see Hull (1997, pp 273-280).2



Another strategy adopted by McCurdy and Morgan (1987) is to lower the frequency ofsampling { weekly on Wednesdays. In general, this strategy may fail because price limitscan happen on any trading day. In addition, this reduces the sample size substantially andthus lowers the statistical precision (see Sutrick (1993)). Conventional data aggregation canbe more harmful to making statistical inference since it introduces bias in the aggregateddata before any statistical inference is conducted. Recently, Wei and Chiang (1997) took arather di�erent approach, in which daily price data were converted into irregularly spacedones: accumulating consecutive unobserved equilibrium returns and treating the multi-dayreturn as a single unit. The success of this conversion is based on the fact that the ob-served accumulated holding return is identical to the (unobserved) accumulated equilibriumholding return. Two limitations in their approach appear immediate: (1) it relies on theassumption that price limits place no impact on the underlying (equilibrium) asset's price-generating process; and (2) it is hard to extend their approach to the case of conditionalheteroskedasticity.Two studies by Kodres (1988, 1993) took an important step towards a formal treatmentof price limits in the context of econometrics. Although she intended to examine whetherprice limits a�ect the testing of an unbiasedness hypothesis in foreign exchange markets,2the key idea of her modeling is quite useful: limited prices are treated as censored variables.3This is understood because when a price limit is reached, the equilibrium price is no longerobservable and is beyond the reached limit. Kodres (1988) developed a censored regressionmodel with a lagged latent dependent variable, that was recently developed into dynamicTobit models by Lee (1997) and Wei (1997). Taking account of conditional heteroskedas-ticity, Kodres (1993) renewed her previous model and formed a model that later led to thedevelopment of Tobit-GARCH models (see, Lee (1997) and Galzolari and Fiorentini (1997)).4The main conclusions of her two papers are the same: price limits do not signi�cantly a�ectthe testing of the unbiasedness hypothesis. From a modeling point of view, however, Kodres(1988, 1993) failed to provide a proper structure of censoring for returns. The censored-GARCH model formed in this paper results from the realization of this problem.Morgan and Trevor (1997) criticized the estimation technique proposed by Kodres (1988,1993) in two aspects: (1) selective use of forward price approximation of futures price fromcovered interest rate arbitrage and (2) numerical complexity. Using forward price approxima-tion likely distorts the variance estimates of the parameters since the uncertainty associatedwith the unobserved equilibrium futures prices is about to be ignored in this treatment. Inaddition, the approximation treatment is not a sensible method since for some other assets,the forward approximation may not exist at all. The numerical computation in Kodres' esti-mation method can immediately become practically impossible with the dimensional increaseof consecutive unobserved equilibrium prices. Morgan and Trevor (1997) developed a Ratio-nal Expectation (RE) method, similar to the approach by Calzolari and Fiorentini (1997),for the estimation of Kodres' (1993) model. Lee (1997) studied a Tobit-ARCH (GARCH)model with the simulated maximum likelihood (SML) method. Although these methodsmight be fairly easily extended to dealing with a normal version of the censored-GARCH2The unbiasedness hypothesis studied by Kodres (1988, 1993) can be stated as whether today's futuresprice is an unbiased predictor of tomorrow's spot price.3The original idea of dealing with a censored regression model is attributed to Tobin (1958).4There is no standard notion for the Tobit-ARCH (GARCH) model. Lee (1997) named it the ARCH(GARCH){Tobit model and Calzolari and Fiorentini (1997) called it the Tobit-ARCH (GARCH) model. Inthis paper, I follow the notion of Calzolari and Fiorentini.3



model, they cannot compete with the proposed method in this paper on the 
exibility ofchoice of thin/fat-tailed conditional error distributions.A few additional advantages associated with the developed Bayesian method are in order:(1) it is natural and convenient to deal with linear constraints (including truncations as aspecial case) on both the model parameters and the latent dependent variables; (2) it is
exible to both prior and likelihood speci�cations; (3) it provides �nite sample inferenceresults because it is Bayesian; and (4) it is straightforward to code and implement.The proposed model and estimation method are applied to Treasury bill futures overa period of high volatility and frequent limit moves. It is found that ignoring price limitsresults in large distortion on the posterior distributions of the model parameters. This isespecially true for the tail-thickness parameter. A simulation example con�rms the pointand further shows that the censored-GARCH model is indeed a proper description for theasset returns subject to daily price limits. Both the real and simulated data indicate thesubstantial deviation of the posterior distributions from the normal family.The remainder of this paper proceeds as follows. Section 2 proposes a censored GARCHmodel and Section 3 develops a simple and practical posterior estimation method for themodel. Section 4 o�ers an application of the model and the method with T-bill futures dataand Section 5 provides a simulation example to con�rm the impacts of price limits reportedin Section 4. Conclusion is given in Section 6.2 The modelThis section models the return process of assets when price limits are present. Two notionsof both price and return are distinguished and linked. As a result, a censored-GARCH modelis formulated. The prior speci�cation of the model parameters is also discussed.Usually, daily price limits are set at the previous-day's (closing) price plus and minus aconstant, say a:5 When a price limit is hit, the observed market price being equal to thelimit deviates from its equilibrium value. It is crucial to distinguish them in the currentstudy. Let p�t and pt be the market equilibrium and observed prices at time (i.e., day) t,respectively. They are linked in the following non-linear fashion:pt = 8>><>>: pt�1 + a if p�t � pt�1 + ap�t if pt�1 � a < p�t < pt�1 + apt�1 � a if p�t � pt�1 � a : (1)In words, the intrinsic value of the price, p�t , can be observed only if it stays in a predeterminedsymmetric band (pt�1 � a; pt�1 + a). The structure linking p�t and pt resembles the one inthe literature of limited dependent variables models (See, for example, Tobin (1958) andMaddala (1987)). If a (conditional mean) dynamic structure is imposed in the process ofp�t , a dynamic Tobit model for pt can be immediately formed. (For a detailed discussion ofdynamic Tobit models, see Lee (1997) from a classical point of view and Wei (1997) from aBayesian point of view.)However, most empirical work in �nance inclines to model return rather than price itselffor three reasons. First, return is a complete and scale-free summary of the investment oppor-5It is stressed that the model proposed in this paper can be easily adapted to the more general case inwhich a is a (conditional) deterministic process. 4



tunity. Second, traders are mainly concerned about their investment returns. Third, returnhas more attractive statistical properties than price, such as symmetry and stationarity.In a setting without price limits, the conversion of prices into returns is straightforward.However, caution must be exercised when price limits exist. De�ne r�t � ln p�t � ln p�t�1 andrt � ln pt�ln pt�1 which are the continuously compounded, equilibrium and observed returnsof the asset, respectively. With some simple algebra, it is easy to prove that the two returnsare related as follows, rt = 8><>: �ct if r�t + LOt�1 � �ctr�t + LOt�1 if ct < r�t + LOt�1 < �ctct if r�t + LOt�1 � ct (2)where ct � ln(1 � apt�1 ), �ct � ln(1 + apt�1 ) and LOt�1 � ln(p�t�1=pt�1). Both ct and �ct arecontained in the econometrician's information set at time t� 1: It might be worth pointingout that using continuously compounded return is computationally more attractive thanusing simple return in current circumstances.To understand the structure (2), the term LOt�1 in it deserves a detailed discussion.From its de�nition, this term captures the unrealized return due to price limit move at timet � 1. It was called a leftover term in Yang and Brorsen (1995). From a pure statisticalpoint of view, if LOt�1 is always zero, the structure (2) is indeed the same as that in atwo-limit Tobit model. Obviously, LOt�1 cannot be always zero in this case. Thus thecensoring structure of a Tobit model is a misspeci�cation for the asset returns. Essentially,this distinguishes my model from the ones used by Kodres (1993) and Morgan and Trevor(1997). A further interpretation of the leftover term is facilitated by the following concept.De�nition 2.1: A price limit string is a sequence of consecutive limited prices that imme-diately proceeds and follows an unlimited price, or a price without the imposition of pricelimits.6At any non-limit move time t, LOt is equal to zero by de�nition. Certainly, p�t does notbelong to any price limit string. Now suppose fp�t+1; p�t+2; � � � ; p�t+�g is a price limit string,which means that all p�t+j ( j = 1; 2; � � � ; � ) are unobserved and both pt and pt+�+1 arenon-limit prices. The subscript � is the length of the price limit string. It is then easy toderive LOt+j = r�t+j + r�t+j�1 + � � � + r�t+1 � (rt+j + rt+j�1 + � � � + rt+1)= Xji=1(r�t+i � rt+i)for all j (1 � j � � ). This says that LOt+j is the accumulated unrealized returns startingfrom the beginning of the price limit string to now (i.e., t + j). It is thus understood thatthe structure (2) is a censoring structure for the asset returns, though it is di�erent from thecensoring structure of a Tobit model. If an upper (down) price limit is hit at time t, thenLOt � (� ) 0. According to the above expression of LOt+j , the following constraints for theequilibrium returns in the price limit string8<: Pji=1 r�t+i � Pji=1 rt+i if p�t+j � pt+jPji=1 r�t+i � Pji=1 rt+i if p�t+j � pt+j (3)6If a sample starts with a limit move, the �rst price limit string then begins with the �rst price observation.Similarly, if a sample ends with a limit move, the last price limit string terminates with the last priceobservation. 5



must be true for any j (1 � j � � ). In addition, the following equality constraint holdsobviously r�t + r�t+1 + � � �+ r�t+�+1 = rt + rt+1 + � � �+ rt+�+1: (4)These constraints imply that although the equilibrium returns in a price limit string are un-observed, they do stay in a constrained region. Furthermore, the inequalities in (3) and theequality in (4), plus LOt = 0 if pt is not a limited price, are equivalent to the censoring struc-ture (2). At this point, it can be easily proved that given an initial unlimited pricep1, the censoring structure (1) for the asset prices is equivalent to the censoringstructure (2) for the asset returns. One implication of the emphasized statement isthat the censoring structure of a Tobit model for the asset returns is not equivalent to thecensoring structure (1) for the asset prices.To model the process of the equilibrium return r�t , the ARCH literature is followed. TheARCH model has been extensively studied since its introduction by Engle (1982). Bollerslev(1986) generalized it to GARCHmodels, which have proven attractive for the returns of most�nancial assets. The crux of these models is their ability to capture volatility clustering. BothKodres (1993) and Morgan and Trevor (1997) followed this idea. For simplicity, this papertakes a parsimonious GARCH(1,1) model for the equilibrium return r�t , which is given byr�t = �+ "�tph�t ; ��t jFt�1 � GEDh�t = ! + �h�t�1(��t�1)2 + �h�t�1 (5)where the innovation "�t is orthogonal to all the available information at time t-1, Ft�1;following Nelson (1991), "tjFt�1 is assumed to have the generalized error distribution (GED)with zero mean and unit variance;7 the parameters governing the volatility function satisfythe typical restrictions: ! > 0, � > 0 and � > 0. The initial volatility h�1 is assumed to bea known constant. The parameter � is the one-period, continuously compounded return onthe risk-free security. The density function of a GED random variable normalized to have azero mean and unit variance isf(zj�) = � exp ��12 ��� z�������21+1=��(1=�) �1 < z <1 (6)where � = [2�2=��(1=�)=�(3=�)]1=2;and �(�) is the gamma function. Parameter � determines the tail-thickness of the densityfunction and can take any value in the interval (0;+1). The standard normal densityfunction is the special case of � = 2: For � > 2, the density function has tails thicker thanthe normal density and for � < 2, the fat-tail phenomenon occurs. Use of the conditionalGED in this study can be justi�ed by two arguments. First, the evidence reported in thelater sections of this paper shows that (observed) asset returns subject to price limits appearto have thin-tails rather than fat-tails and the conditional GED allows for the 
exibility.Second, even though conditional equilibrium return can have fat tails and conditional t-distributions have been widely used by some researchers, Duan (1997b) pointed out thatuse of conditional t-distributions for modeling continuously compounded return implies an7See Harvey (1981) and Box and Tiao (1973). In Box and Tiao (1973), this distribution is called theexponential power distribution. 6



unbounded expected simple asset return. Thus t-distributions are not a sensible choice inthis situation. I call the model consisting of (2) and (5) a censored-GARCH model in orderto distinguish it from a Tobit-GARCH model.It should be noted that the choice of GARCH(1,1) parameterization of the equilibriumasset returns is by no means crucial for the applicability of the developed estimation methodin this paper. For example, ARCH (Engle, 1982), GARCH (Bollerslev, 1986), EGARCH(Nelson, 1991), NGARCH (Engle and Ng, 1993), and GJR-GARCH (Glosten Jagannathanand Runkle, 1993), or more generally the Augmented GARCH(p,q) model (Duan, 1997b)can all be readily taken and the so-formed censored models can be uniformly dealt with bythe estimation method proposed in this paper.In order to proceed with a Bayesian approach to estimating the censored-GARCH model,a prior distribution of the model parameters must be speci�ed. Let � = f�; !; �; �; �g. Theprior distribution of � is speci�ed in an improper fashion asp(�) / constantwhere8 � 2 (�1;+1); ! 2 (0;+1); � 2 (0; 1); � 2 (0; 1) and � 2 (0;+1):No further di�culty will be added to the estimation procedure proposed in the later sectionsif the weak stationarity constraint � + � < 1 is imposed. From a practical point of view,this improper prior can be replaced by the following proper prior,p(�) = p(�)p(!)p(�)p(�)p(�) (7)where � � U(��1; �2); ! � U(0; b); � � U(0; 1); � � U(0; 1) and � � U(�1; �2)and U(�1; �2) denotes a uniform distribution in the interval (�1; �2); f�1; �2; �1; �2; bg areviewed as hyperparameters, indexing the prior distribution. As long as the values of �1; �2; �2and b are large enough and that of �1 is su�ciently close to 0, the above two prior distribu-tions amounts to representing the same prior information. The posterior estimations in thispaper are all based on the prior speci�cation (7) with some variation in the choice of hyper-parameters. It should also be indicated that the particular forms of the prior speci�cationdo not matter with respect to the posterior computations in this paper due to the 
exibilityof the method. Consequently, posterior estimations with more informative priors (includingthe small values of the hyperparameters) turn out to be trivial exercises. The choice of thehyperparameters is delayed to Sections 4 and 5.3 The posterior approachThe likelihood function of the censored-GARCH model can be derived in a manner similar tothat in Kodres (1993) or Lee (1997) or Wei (1997). Overall, it is analytically intractable due8Although limited liability implies that the domain of � is [�1;+1), it is convenient and customary touse (�1;+1) for the domain. So far no negative consequence has been reported with the practice in theempirical �nance literature. 7



to the multiple dimensional integrals for the unobserved equilibrium returns, which preventsany analytical solution of posterior distribution and moments of the model parameters. Thissection develops a posterior estimation algorithm for the censored-GARCH model, based onthe griddy Gibbs sampler-data augmentation algorithm (Ritter and Tanner, 1992).3.1 The griddy Gibbs sampler-data augmentationThe Gibbs sampler-data augmentation algorithm is a well known sampling tool in econo-metrics. A brief review of this tool helps to introduce and understand the griddy Gibbssampler-data augmentation algorithm. The basic idea can be explained in the simplest ver-sion of the tool. Suppose that the model parameters � can be decomposed into two blocks,� = (�1; �2), R is the vector of total observed returns rt , and r� the vector of total unob-served equilibrium returns r�t due to price limit moves at time t and/or t�1. If the completeconditional distributions�1jf�2; r�; Rg; �2jf�1; r�; Rg and r�jf�1; �2; Rg (8)are all in standard forms (for instance, normal and gamma distributions) from which randomnumbers could be easily sampled, then the Gibbs sampler-data augmentation algorithm is toiteratively draw from these conditionals. As the number of draws grows large, the draws soobtained converge in distribution to that of the joint posterior distribution of the parameters� and the unobserved returns r�. (For references, see Gelfand and Smith (1990) and Tannerand Wong (1987).) What if the conditional distributions are in non-standard forms? A(more) numerical version of the Gibbs sampler-data augmentation algorithm was developedby Ritter and Tanner (1992).9 One can evaluate each conditional distribution over a gridof points and then generate a draw from the simulated conditional distribution by invertingit at a value sampled from the uniform distribution in (0; 1). A detailed description of theprocedure is given in the Appendix. The implementation of this procedure requires thateach conditional distribution be one-dimensional since it is the case in which the above-mentioned numerical evaluation can be conveniently proceeded. The posterior estimationis then straightforward with the simulated posterior draws (see a detailed discussion byBauwens and Lubrano (1998)). The convergence of each posterior Markov chain can beeasily checked by using the visual inspection of CUMSUM statistics proposed by Yu andMykland (1994). A standardized version of the statistic can be written as, with N draws ofa Monte Carlo Markov chain �(n),CSt = (1t tXn=1 �(n) � ��)=��; for t = 50; 100; 150; :::; Nwhere �� and �� are the empirical mean and standard deviation of the N draws. If theMCMC chain converges, then the plot of CSt against time t should converge smoothly tozero. On the other hand, a long and regular excursion plot of CSt indicates the absence ofconvergence of the chain. Bauwens and Lubrano (1998) re�ned the idea by introducing an��band for CSt. If CSt remains in the ��band (around zero) for all t larger than K(�), then�(n) has converged after K(�) draws for the estimation of the posterior mean with a relativeerror of 100 � � percent.9They did not consider the data augmentation, but it adds no more di�culty if the data augmentationis incorporated into their method. 8



3.2 Conditional distributionsThis subsection focuses on the derivation of the complete conditional distributions of theparameter � and the latent returns r�. I begin with the \latent likelihood function" of themodel, i.e., the sampling distribution of the total equilibrium returns R� (R� can be viewedas the union of R and r�). Because R� is not fully observable, I use the word \latent" tocapture the essential idea. The latent likelihood can be easily written asL�(�; !; �; �jR�) = TYt=1 � exp h�12 ���(r�t � �)=�ph�t ����iph�t�21+1=v�(1=�) (9)where h�t = ! + �h�t�1(��t�1)2 + �h�t�1. The \latent posterior distribution" is de�ned ac-cordingly, i.e., the latent likelihood function multiplied by the model prior (see (7)). Theconditional posterior distributions of the parameters have the following density kernels�j!; �; �; �;R� � TYt=1 exp h�12 ���(r�t � �)=�ph�t ����iph�t �1 < � < �2;!j�; �; �; �;R� � TYt=1 exp h�12 ���(r�t � �)=�ph�t ����iph�t 0 < ! < b;�j�; !; �; �;R� � TYt=1 exp h�12 ���(r�t � �)=�ph�t ����iph�t 0 � � < 1; (10)�j�; !; �; �;R� � TYt=1 exp h�12 ���(r�t � �)=�ph�t ����iph�t 0 � � < 1;�j�; !; �; �;R� � TYt=1 � exp h�12 ���(r�t � �)=�ph�t ����i�21+1=��(1=�) 0 < � < +1:The conditional distributions seem to possess the same form, but they are viewed ratherdi�erently because each of the variables conditions on all the others. Obviously, they are allin non-standard forms, which motivates the use of the griddy method.Now consider the conditional distribution of the latent data as required in the dataaugmentation step discussed above. A corresponding concept to price limit string is nowde�ned for returns.De�nition 3.1: A latent (return) string is a sequence of consecutive unobserved returnsthat follows and proceeds immediately an uncensored return.Unlike in a dynamic Tobit model, the unobserved returns conditioning on the model pa-rameters and all observations are not independent across di�erent latent strings. This is easilyseen from the kernel of the conditional density of the latent returns r�t+1; � � � ; r�t+nt jf�;R� �fr�t+1; � � � ; r�t+ntgg in a latent string fr�t+1; � � � ; r�t+ntgexp h�12 ���(rt+nt+1 � �)=�qh�t+nt+1����iqh�t+nt+1 ntYj=1 exp h�12 ���(r�t � �)=�qh�t+j ����iqh�t+j (11)where nt is the length of the latent string. The �rst term in this density kernel shows upbecause h�t+nt+1 is a function of the latent return r�t+nt according to the model speci�cation9



(5). The unobserved returns in this latent string are linked to those in the past latent stringsthrough the volatility function h�t . If the volatility function is determined by observed returnsrather than unobserved returns, the latent returns in this latent string conditioning on themodel parameters and all observables are conditionally independent of the latent returns inother latent strings. In this case, the joint density of all latent returns can be written as theproduct of the density of the latent returns in a latent string over all such strings. This isanalogous to the case of a dynamic Tobit model as discussed in Wei (1997). As a result, thedata augmentation step becomes simpler.Notice that the censoring structure (2) implies the constraints (3) and (4) for the latentreturns. Thus the distribution of the latent returns in a latent string, conditioning on all themodel parameters and other latent returns and observables, turns out to be (11) subject tothe constraints (3) and (4). It is interesting to see that a change-of-variable technique cansolve the sampling problem nicely. Set266664 1 0 � � � 01 1 � � � 0... ... . . . ...1 1 � � � 1 377775266664 r�t+1r�t+2...r�t+nt 377775 = 266664 xt+1xt+2...xt+nt 377775 (12)where the coe�cient matrix is of a lower triangle: The reason for making the transformationis that the transformed variables have simple and neat forms of constraints, and are easierto be sampled. According to the change-of-variable technique, it is easily con�rmed thatthe density kernel of the transformed random variables xt+1; xt+2; � � � ; xt+nt has the followingformexp h�12 ���(rt+nt+1 � �)=�qht+nt+1����iqht+nt+1 ntYj=1 exp h�12 ���(xt+j � xt+j�1 � �)=�qht+j����iqht+j (13)where the determinant of the Jacobian of the inverse transformation of (12) equals 1,ht+1 = ! + �(rt � �)2 + �h�tht+2 = ! + �(xt+1 � �)2 + �ht+1ht+j = ! + �(xt+j�1 � xt+j�2 � �)2 + �ht+j�1 j = 3; 4; � � � ; nt + 1;xt+0 � 0 (for notational convenience), the constrains (3) and (4) are easily transformed into8<: xt+j �Pji=1 rt+i if p�t+j � pt+jxt+j �Pji=1 rt+i if p�t+j � pt+j (14)for 1 � j < nt and xt+nt =Xnti=1 r�t+i: (15)The equality constraint allows one-dimensional reduction of the random vector to be sampled.Set At+j = fxt+jjxt+j �Xji=1 rt+i if p�t+j � pt+j and xt+j �Xji=1 rt+i if p�t+j � pt+jg10



where j = 1; 2; � � � ; nt�1. Then the sampling problem becomes to draw xt+1; xt+2; � � � ; xt+nt�1from the following truncated distributionexp h�12 ���(rt+nt+1 � �)=�qht+nt+1����iqht+nt+1 nt�1Yj=1 exp h�12 ���(xt+j � xt+j�1 � �)=�qht+j����iqht+j Ifxt+j2At+jg(16)where I is an indicator function. After drawing xt+1; xt+2; � � � ; xt+nt�1 from the kernel (16),the draws of r�t+1; � � � ; r�t+nt can be easily obtained by using the inverse transformation of(12). The above discussion is summarized as follows.Summary: For the censored-GARCH model, the equilibrium returns in a latent stringr�t+1; � � � ; r�t+nt can be sampled as follows, for the data augmentation step,- step 1: transform the equilibrium returns into xt+1; xt+2; � � � ; xt+nt by using (12).- step 2: sample the variates xt+1; xt+2; � � � ; xt+nt�1 from the truncated density kernel(16).- step 3: transform the draws of xt+1; xt+2; � � � ; xt+nt�1 into the draws of r�t+1; � � � ; r�t+ntaccording to (4) and (12).Because (16) is still in a non-standard form, the vector fxt+1; xt+2; � � � ; xt+nt�1g needs tobe further partitioned into nt � 1 univariate variables and the kernel of the distribution ofeach univariate variable xt+j isexp h�12 ���(rt+j+1 � �)=�qht+j+1���� � 12 ���(xt+j � xt+j�1 � �)=�qht+j����iqht+jht+j+1 Ifxt+j2At+jg (17)where ht+j is de�ned above. This non-standard density kernel again motivates the use ofthe griddy method.So far, all the full conditional density kernels of the model parameters and latent datahave been derived. The posterior output can be now obtained by applying the griddy Gibbssampler-data augmentation as given before.4 An application to Treasury bill futuresThis section considers an application of the proposed model and estimation method. Thedata contain the prices of the 3-month US Treasury bill (T-bill) futures and price limitdates.10 The background and description of the data are brie
y discussed, a preliminaryanalysis is conducted, for the sake of comparison, two other models, namely a GARCH (1,1)model and a Tobit-GARCH model, are also introduced, and then the posterior results of allthe models are reported and compared.4.1 Background and dataThe contract of the 3-month T-bill futures was �rst introduced in January, 1976, at the In-ternational Monetary Market (IMM), a division of the Chicago Mercantile Exchange (CME).It has been playing a major role in hedging short-run interest rate risks. So far, it is the most10The data are provided by I.G. Morgan. 11



heavily traded instrument among all interest rate futures. The sample spans from October1, 1979 to October 29, 1982, which represents a special episode in the history of the FederalReserve System (the Fed). It is well-known that during the period, the Fed adopted a mon-etary operating procedure that was aimed at combating a non-tolerable in
ation rate. Thisso-called monetarist-advocating strategy is to control money supply so that interest rateswere allowed to adjust more freely. The direct impact of the Fed's strategy on the T-billfutures was the high volatility in the futures market during the whole period (see Figure 1).As documented in International Monetary Market Yearbook (1983, p52), during thesampled period, the daily price limits in the futures market were regulated at the levels of50 basis points above or below the previous day's settlement price before June 19, 1980 andthen raised to those of 60 basis points. The price limit moves of the �rst deferred contractof the T-bill futures are 57 days. Figure 2 plots the daily prices of the futures contracts andtheir reached limits (with the symbol �) against time. The ratio of price limit days to totalobservations is 7:3%. Of 57 limit days, 18 are two-day consecutive limit moves in the samedirection and 2 occurred in the opposite direction.4.2 Preliminary analysisThe time series plot of the T-bill futures returns is displayed in Figure 1 in which volatilityclustering of the returns is easily con�rmed. The sample statistics of the data are reported inTable 1. It is noted that the excess kurtosis of the observed returns is negative (�:39), whichseems to suggest a contradiction with the well-known fat-tailed phenomenon. However, ifprice limits are taken into account, I argue that this contradiction can be easily reconciled.First, price limits prohibit extreme returns by restricting large movement of prices. As aresult, this reduces the excess kurtosis of the observed returns, meaning that the observedreturns can be thin-tailed even if the equilibrium returns are fat-tailed.Next, the appearing contradiction can be explained with an examination of the (uncondi-tional) density of the observed returns. This density is unknown, but can be easily estimatedin a simple non-parametric fashion. A kernel estimation method is adopted and the selectedkernel is given by K(u) = 1516(1� u2)2I(juj � 1): (18)This is the typical Biweight kernel. The bandwidth is taken as 2:78T� 15 �̂ where T is thesample size and �̂ is the sample standard deviation of the observed return rt (For a reference,see Silverman (1986)). The bandwidth is selected based on the widely-used criterion ofminimizing the approximate mean integrated square error, under the assumption that the\true" distribution of the observed returns rt is normal (see Silverman (1986, p. 40)). Thedensity estimate (solid curve) as well as a simulated normal density (dotted curve) aredepicted in Figure 3. The normal density serves as a reference point, with the same meanand standard deviation as those of the observed returns. At �rst glance, it is surprisingthat two humps appear on the tails of the estimated density. It is found that they are quiterobust with respect to alternative choices of bandwidth, as long as the bandwidth is not toolarge. What generates the humps? The answer is price limits, simply because price limitsa�ect (both positive and negative) large returns which are located in the two tails of theestimated density. Now, it is easy to understand that the tail behavior of the estimateddensity of the observed returns is consistent with the negative excess kurtosis of the returnsample. Furthermore, a comparison between the two densities in Figure 3 suggests that12



the equilibrium returns of the futures contracts have a fat-tailed unconditional distributionbecause these returns are not restricted by price limits and have the same behavior as theobserved returns when tails are ignored. At this point, hopefully it is convinced that pricelimits should be neither ignored nor deleted.4.3 Two other modelsIt may be interesting to compare the estimation results of the censored-GARCH model withthose of two relevant models. For the purposes, �rst consider a GARCH(1,1) model for theobserved return rt, which represents the ignorance of price limits,rt = � + "tpht; �tjFt�1 � GEDht = ! + �ht�1(�t�1)2 + �ht�1 (19)where all the notations here are the same as in Section 2, �tjFt�1 has zero mean and unitvariance and the typical restrictions on the volatility parameters are satis�ed: ! > 0; � > 0and � > 0. It is noted that this model is the same as the model (5) except that here rtis naively treated as an equilibrium return. If this naive treatment is inappropriate, then asigni�cant di�erence between the posterior results of this model and the censored-GARCHmodel should be observed.Next consider Kodres'(1993) Tobit-GARCH model, with the replacement of a (condi-tional) normal error term with a conditional GED error term, which can be generally writtenas rt = 8><>: �ct if r�t � �ctr�t if ct < r�t < �ctct if r�t � ct (20)and r�t = �+ "�tph�t ; ��t jFt�1 � GEDh�t = ! + �h�t�1(��t�1)2 + �h�t�1 (21)where again the notations here are the same as in Section 2, ��t jFt�1 has zero mean and unitvariance and the typical restrictions on the volatility parameters are satis�ed: ! > 0; � > 0and � > 0. As discussed before, this model is a misspeci�cation on the link between theobserved return rt and its equilibriumcounterpart r�t in certain time points. For instance, theequality constraints on consecutive unobserved equilibrium returns (see (4)) are overlookedin this speci�cation. As a result, this increases the dimension of the unobserved equilibriumreturns in such a sample. On any single limit day t, Morgan and Trevor (1997) convertedthe equilibrium price p�t into two unobserved equilibrium returns r�t and r�t+1, leaving theequality constraint on the two returns unconsidered. On any two consecutive limit days, sayt and t + 1, the two equilibrium prices p�t and p�t+1 were converted into three unobservedequilibrium returns r�t , r�t+1 and r�t+2, with the ignorance of the equality constraint on them.If the two day limits are in the same direction, r�t+1 was treated as a missing variable sincethere is no information to constraint it in this treatment. The loss of information due to amistreatment of price limits in a Tobit-GARCH model may result in an estimation distortionof the model, or at least an e�ciency loss of the estimation.13



4.4 Posterior resultsThis subsection reports and compares the posterior results of the three models, two of whichare given in the last subsection, and another of which is the censored-GARCH model, withthe T-bill futures data. The same prior speci�cation (7) is applied to all the three models.The hyperparameters are: �1 = �2 = :12, b = :35, �1 = 0:1 and �2 = 4:5. The choice ofthe particular values for hyperparameters is not attempted to inject much prior informationinto the analysis. Instead, it is made mainly based on computational e�ciency, meaningthat further extension of the supports of these parameters would not signi�cantly alter theposterior results except that more computing time is involved.Table 2 and Figure 4 present the posterior results. Two comments can be drawn fromthem. First, both the censored-GARCH model and the Tobit-GARCH model suggest a(conditional) fat-tailed distribution (� < 2) for the underlying equilibrium returns, which isconsistent with the fat-tailed phenomenon, while the GARCH model implies a (conditional)thin-tailed distribution. This simply concludes that price limits should not be ignored be-cause of the substantial di�erence in their data distributions. Second, the major di�erencebetween the estimates of the censored-GARCH model and those of the Tobit-GARCH modelis re
ected in the parameters of their volatility functions. Although it may not be easy tojudge how much the parameter estimates of the Tobit-GARCH model are distorted due tothe misspeci�cation of the model, we can see that the variances of the estimated volatilityparameters are larger for the Tobit-GARCH model than for the censored-GARCH model.This can be further con�rmed in Figure 4 in which the posterior histograms of the parame-ters for the three models are plotted. This is not surpring because the Tobit-GARCH modelintroduces some additional uncertainty to the model estimation.For the estimation of these models, I rescale the return data, multiplying 103 by them, sothat ! needs to be divided by 106, � divided by 103. The modi�ed version of the CUMSUMevolution of the Monte Carlo estimates of the posterior means of the parameter for thecensored-GARCH model is displayed in Figure 5 (see the discussion in Section 3.1). Theerror band � is chosen as :1. The plots suggest that to ensure the Markov chains of thesampled parameters stay in the � � band, or converge in terms of the criterion discussedin Section 3.1, the �rst 6000 draws must be dropped. The high cost of dropping so manyinitial draws is due to the high correlation between the posterior parameters ! and �. TheGibbs sampler-data augmentation retains next 4000 draws. Additional draws have been alsotried, but could not signi�cantly improve the posterior results. I have also examined themodi�ed CUMSUM plots for all the posterior latent returns, but do not report them here tosave space. The program is coded in GAUSS and implemented in a Compucon Intel 430HxPentium 200 PC. The CPU time consumed in the computation is about 12 hours with 10; 000draws for the censored-GARCH model.5 A simulation exampleThis section o�ers a simulation example to ground the �ndings obtained in the last section.For the purposes, this example is designed to share certain major characteristics with thereal data studied in the last section so that it is easy to compare the results here with thosethere.Example 5.1: Let r�t be an equilibrium daily return series generated from the following14



DGP, r�t = 0 + "�tph�t ; ��t jFt�1 � N(0; 1)h�t = :05=106 + :05h�t�1(��t�1)2 + :90h�t�1 (22)with the sample size 1000. The daily equilibrium price p�t is initialized at p�1 = 90 andconstructed as follows, p�t = exp(ln p�t�1 + r�t )where r�t resembles a daily return used in the last section. The observed daily price series isgenerated by pt = 8>><>>: pt�1 + :17 if p�t � pt�1 + :17p�t if pt�1 � :17 < p�t < pt�1 + :17pt�1 � :17 if p�t � pt�1 � :17 (23)where :17 is used to de�ne daily price limits and is so selected to achieve roughly the samenumber of limit moves as that in the application of the last section. The initial 200 simulatedprices are thrown away to reduce their likely e�ect and the rest of the simulated prices arekept for this analysis. Thus the total number of price observations is 800. The number ofsimulated price limit moves is 58, of which 3 pairs are two-day consecutive limit moves andall others are single day limit moves. Recall that the observed and equilibrium daily returnswere de�ned in Section 2. To be comparable with the application in the last section, bothrt and r�t are rescaled by multiplying 103.Sample statistics of the simulated (observed and equilibrium) returns are reported inTable 3. In this example, the excess kurtosis of the unconditional observed return rt is alsonegative though the excess kurtosis of the equilibrium return r�t is still positive. Obviously,the negative kurtosis can only be caused by price limits in this circumstance. The interpre-tation of the negative excess kurtosis in the last section is supported. Either a normal orStudent-t version of GARCH model cannot �t the fourth moment of rt since such modelsimply a positive excess kurtosis of rt. The message behind this observation is that ignoringor deleting price limits is indeed inappropriate.The (unconditional) density estimation of the simulated return rt is conducted in the samemanner as that in the last section. For a reference, the (unconditional) density estimation ofr�t (the data r�t are available because they are simulated) is also presented. The estimated twodensities are displayed in Figure 6, with a simulated normal density. The normal density isdesigned with the same mean and standard deviation as those of the sample rt. Similarly towhat we observed in the last section, two humps appear on the tails of the estimated densityof rt and they are quite robust with respect to alternative choices of bandwidth. Clearly,they are induced by price limits because no hump arises in the estimated density of r�t .This con�rms the major �nding in the preliminary analysis of the last section and suggeststhat price limits should be neither ignored nor deleted. In general, it is easily understoodthat price limits may not always induce negative excess kurtosises of such samples, whichshould depend on the relative number of limited prices. As the number increases, the excesskurtosises of the samples would decrease.Following what have been done in the last section, I also estimate the three modelsthere with the simulated returns rt. Table 4 and Figure 7 report the posterior results. It isimpressive that the results from the censored-GARCHmodel are better than those from boththe Tobit-GARCH model and the GARCH model. This is not surprising because ignoringprice limits makes the fourth moment of the data and the humps on the tails of the data hard15



to �t, and the Tobit-GARCH model misspeci�es the observed return process. Interestingly,the posterior estimation results and distributions here overwhelmingly con�rm those in thelast section. For example, posterior draws of tail-thickness parameter � have a mean fairlyclose to its true value 2 for the censored-GARCH and Tobit-GARCH models, but not for theGARCH model. In addition, the information loss due to the Tobit-GARCH model reducesthe estimation e�ciency of the model.The implementation details of estimations of the three models are exactly the same asthose in the last section. They are not reported here, because with the true data generatingprocess known, it is easy to see the adequacy of the proposed method, and the accuracy ofthe posterior results.6 ConclusionThis paper has formulated a censored-GARCH model to describe the return process of theassets subject to daily price limits. This model di�ers from a Tobit-GARCH model asposted by Kodres (1993) and further studied by Morgan and Trevor (1997) in at least onemajor aspect. While the censored-GARCH model implies a set of linear constraints on theunobserved equilibrium returns required by price limits, a Tobit-GARCH model is not ableto fully capture these constraints and introduces some unnecessary uncertainty to the modelestimation.Furthermore, this paper has o�ered a simple and practical Bayesian estimation tech-nique for the censored-GARCH model, which is built on the griddy Gibbs sampler-dataaugmentation algorithm (cf. Ritter and Tanner (1992)). Sampling from consecutive unob-served equilibrium returns consists of the key part of this developed estimation technique. Idemonstrated that this sampling procedure can be nicely and easily implemented by usinga simple change-of-variable technique combined with the griddy method.Several major advantages of the proposed estimation method are worth being summa-rized. First, it allows for 
exibility on both prior and model speci�cations. Second, itprovides a general and simple sampling procedure to draw variates from a distribution witha set of linear constraints (A truncated distribution is a special case). Third, it can be easilygeneralized to estimate other censored and/or non-linear regression models. Lastly, it isstraightforward to code and implement in almost all routinely-used statistical software.An application study and a simulation example show the worthiness of the developmentof the new model. A few main results have been derived. First, price limits can result innegative kurtosis of the sample of the observed returns, though the distribution of underlyingequilibrium returns may still be fat-tailed. Second, price limits can distort the tail behaviorof the distribution of the observed returns, which may further explain why the sample of theobserved returns is thin-tailed (i.e., negative kurtosis). Clearly, it is hard, if not impossible, to�t these important features of such data if price limits are ignored or deleted. Consequently,this paper calls for a serious consideration of taking account of price limits in dealing withsuch samples. Third, a Tobit-GARCH model would result in distortions because it is amisspeci�cation to the observed return process of the assets subject to daily price limits. Inparticular, some additional uncertainty due to the model reduces the estimation e�ciencyof the model. Therefore, the censored-GARCH model is strongly recommended for futurestudies. Finally, both the real application and the simulation example delivered non-normalposterior distributions of the parameters of the volatility functions, which is the strength of16



the Bayesian estimation method in �nite samples.In an on-going research, I am making a comparison study of the performances of theproposed estimation method, the possible extensions of the maximum simulated likelihoodmethod used, for example, by Lee (1997), and the EM method. I am also investigating the�nancial and economic implications of price limits by using some variations of the model pro-posed in this paper. The 
exibility of the developed method should make this investigationeasy and convenient.
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Table 1: Sample statistics of T-bill futures returns(rescaled by 1000) October 1, 1979 { October 29,1982Sample Size Mean Std. Dev. Ske. Excess Kurt. # of price limitsrt 777 -.0037 0.75 .0416 -.39 57Table 2: Estimation results of T-bill futures returnsParameterModel # � ! � � �GARCH post. mean -.01 .06 .06 .83 2.50post. std. dev. (.03) (.06) (.03) (.12) (.32)Tobit- post. mean .0 .05 .05 .87 1.63GARCH post. std. dev. (.03) (.05) (.03) (.08) (.18)Censored- post. mean .0 .03 .04 .91 1.62GARCH post. std. dev. (.03) (.03) (.02) (.06) (.18)Note: ! is multiplied by 106 and � by 103.Table 3: Sample statistics of Example 5.1Sample Size Mean Std. Dev. Ske. Excess Kurt. # of Limited Pricesr�t 799 .027 1.05 .001 .29rt 799 .027 .98 -.061 -.55 58Table 4: Estimation results of Example 5.1Parameter� ! � � �Model # 0 .05 .05 .90 2.0GARCH post. mean .02 .18 .06 .76 3.04post. std. dev. (.03) (.12) (.03) (.12) (.46)Tobit- post. mean .03 .14 .06 .81 1.80GARCH post. std. dev. (.04) (.09) (.03) (.09) (.19)Censored- post. mean .03 .11 .05 .85 1.82GARCH post. std. dev. (.04) (.08) (.02) (.08) (.19)Note: ! is multiplied by 106 and � by 103.18
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Figure 5 CUMSUM plots of posterior means estimates(Censored-GARCH model with the return of T-bill futures)
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AppendixThe algorithm of the griddy Gibbs sampler-data augmentation can be written as followsfor M draws:- step 1: initialize the chain at any value �(0) and r�(0) in the support of (�; r�) space.- step 2: start the loop at n = 1.- step 3: compute p(�1j�(n�1)2 ; r�(n�1); R) over the grid (�1; �2; � � � ; �g) to obtain Gp =(p1; p2; � � � ; pg):- step 4: compute the values Gp = (0;�2; � � � ;�g) where�i = Z �i�1 p(�1j�2; r�; R) d�1 i = 2; 3; � � � ; g;and normalize the Gp to get the cdf values Gp=�g of p(�1j�(n�1)2 ; r�(n�1); R):- step 5: generate u � U(0; 1) and invert the cdf Gp=�g to get a draw �(n)1 .- step 6: redo step 3-6 for �2 and each element of latent data r�.- step 7: increment n by 1 and go to step 3 unless n > M:- step 8: discard the initial m draws, and return all other draws.In this algorithm, p(�) stands for the density function of the corresponding parameter orone element of the latent data conditioning on all other information.A few comments are worth mentioning for the implementation of the algorithm. First, thechoice of the grid of points is somewhat di�cult and constitutes the main e�ort in applyingthe method. A proper choice of the grid points often requires the exploration of the shapeof the conditional densities and a trial period. Second, the integration taken in step 4 canproceed in various ways. For simplicity, this paper uses the Simpson rule. In step 5, theinverse of the cdf is constructed by using linear interpolation.
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