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1 Global Invariance

Let G be a non-Abelian Lie group with n-dimensional Lie algebra L£g"
(X4, X =C". X a=1,2,--- ,n, (1.1)
where C%, = —(C"?, are the structure constants which satisfy the Jacobi identities

Cacd dee + Cbad CCde + chd Cade =0.

Consider a theory £(i(z),d,p;i(x)) with matter fields,p;(2) carrying r-dimensional representation p(X) of the
Lie algebra
6gpl($) = p(X)gpl(‘T) = 6a(T"a)ij @](x)a 1= 17 27 e, Ty, (12)

where ¢, are the infinitesimal constant parameters of the Lie group G, and 7%, is a r X r matrix representation
of Lg™: [T%,T%);; = C’abchj. From Eq(2) it follows that 0,¢; transforms covariantly (i.e., by the same

representation matrices p of the field ;) under G,
6 (Oupi(r)) = 0 (0pi(x)) = €a(T*)ij Ouipj()- (1.3)
The Lagrangian, therefore, transforms according to
oL oL

5,& = — ea(Ta)ij w; +

%, 0y 1) s (14

Thus, the necessary and sufficient conditions for L to be invariant, 6L = 0, under an arbitrary compact group

of global internal transformations, are given by the following n identities,

a - a‘é ay. . . aﬁ ay. . .=
G(p) = £ (T%)ij 5 + 9 (D7) (T*)ij Oupj = 0. (1.5)
Using the definition of the Euler derivative
5L . oL oL
— == 9, ==, 1.6
depi i : <3(5u<ﬂi)> (16)



we can rewrite the condition of global invariance Eq(1.5) in the form

oL . oL .
5o (T%)ij pj + Oy (8(%%) (T); %‘) =0. (1.7)

G*(p) =

This identity is called the Noether identity. If the fields satisfy the Euler-Lagrange equations

5L
dpi(x)

then it follows, from Noether identity Eq(1.7), that the current, defined by

—0, (1.8)

Tp@) = gy (T or(a), (1.9

is conserved.

2 The Noether Charge and its Properties

For convenience let us define the functional

sz/ww@%m. (2.1)

where ¢ denotes a space-like hypersurface in R(*3) | and do*(z), is a n-vector differential at x. The functional

derivative at some point x is defined by

5Qlo] .\ Qlo] -~ Qlo]

= 2.2
do(z)  w@—o w(x) (2:2)
where w(z) is the volume enclosed between & and o. Therefore, according to Gauss’ theorem, we find
5Qo]
=0"J,. 2.3
do(x) . (23)

Now, if J,(x) is conserved, then 6Q/dc = 0 and therefore Q[o] is independent of o. This means that we are

free to choose a particular o = z° = ¢ = const. hyperplane to evaluate Q;

Q) = /d% Jo(t, 7).
Clearly, this integral is time-independent iff the conserved vector field satisfies the boundary condition

| —

2 Ji(x) — 0, as |7 — oo. (2.4)



Indeed,
dQ/dt = /d3x80J0 = —/deaiJi = fyg ds-J=0.

Next, we define, for some function F'(x), the functional

Rolo] = / do, () By F(x). (2.5)

Taking the functional derivative, we find

R [o] B _ 6R,,[o0]
So(z) 00, F) = 0,0, F) = do(x)
Thus, (R, (o] — Ry,[o]) is independent of o, i.e.,
(R lo] — Ruylol) = 0 (2.6)
do(x) M e e '

Again, we are allowed to choose the hyperplane o0 = ¢t = const. If we take, for example, 4 = 0, and v = j, we get

Roj - Rjo = /ddxﬁjF(x) —-0= /ddxajF(ﬂj)

For uy =v =0, and for u =i, v = j, we have the following trivial results

Roo — Roo = (/ d*x 0y F(z) — /d3:c80F(:c)> =0,

Rij—RjZ':O—OZO.
Thus, if the function F(x) satisfies the boundary condition
|Z)? F(z) — 0 as || — oo,

we see that the following identity is satisfied for all values of p and v, (see|[2])

/ do,(z) 0, F(x) = / do,(x) 0, F(x). (2.7

o

Now, the action of the translation generator P* on any local field J,(x) is given by

I, (x) =[PP, J,(2)] = 0" T, (z). (2.8)



Integrating this equation we find by virtue of Eq(2.7), and assuming |#|?J; — 0 as |Z] — oo, that

[iP", / do” J,(z)] = / do” 0" J,,(z) = / dot 9" J,

Thus, for a conserved vector field, 0*J,, = 0, we find
[iP", Q] =0.

That is, the integral over all space of the time component of a conserved vector, i.e., the Noether charge
Q = [ d3z Jo(z), is translationally invariant.
Under Lorentz transformation, exp(iw,, M#""/2), a vector field J,,(z) transforms according to

M Jp(x) = [IM", J,(x)] = 9" (xt J,) — O (x¥ J,) + 0 J” — &) J*. (2.9)
Operating on this equation with [ do?, and writing Q = [ do” J,(z), we find

[iM*, Q] = /da" o x“] J /da wgl (2.10)

where

o (a4 7,) =0 (2 J,) = 0" (¥ J,),

/da[" J = /da“ JY (x /da JH(x

If the vector field satisfies the boundary conditions

and

|Z)% 2" J, — 0, as |Z] — oo,

we can use the identity Eq(2.7) to show that the following identity holds
/dap o (ac“} Jp) = /da[” ! 0°J, + /da[” JH. (2.11)
Inserting this in Eq(2.10), leads to

[iM"™, Q] = / do™ 2 9.7, (2.12)

Thus the charge @ is Lorentz invariant, i.e., [iM*, Q] = 0, if the conserved Noether current J,(z) satisfies the

above-mentioned boundary conditions. Thus, we have completed the proof the following theorem.

Theorem 1. If the vector fields J; are conserved and well-behaved at spatial infinity, then the associated

charges, defined by the integrals

Q" = / 3z J§ (z), (2.13)



are Poincare-invariant and time-independent scalars.

Using the definition of the conjugate momentum

the Noether charge becomes

Owing to the equal-time commutation relations

[‘pi(t’ f)7 71-j(ta g') = iéij 63(f - :'j)7
[@i(t’f)7¢j(t7g)] = [ﬂi(t’f)7ﬂj(t’g)] =0,

and the algebra of the matrices T, it is easy to see that the charges Q% generate the correct transformation on
the field variables,

5<P1(-T) = [Ea Qa(t)a @z(x)]a (214)

and form a representation of Lg",

[Q“(1),Q°(1)] = C* . Q°(t). (2.15)

The remarkable fact about Eq(2.14) and Eq(2.15) is that they are true even if G is not a symmetry group,
i.e., the charges Q¢ satisfy the Lie algebra of G and generate the proper transformation on the fields regardless

whether or not the currents J(x) are conserved.

3 Local Gauge Invariance

Let us now assign an independent group element g(e) € G for each spacetime point z#, i.e., suppose now that
the parameters of the group are arbitrary functions of the coordinate €,(x). The fields then transform according

to
Spi(z) = (T%)ij €a() pj(). (3.1)

The group of such transformations is called the local or gauge group. From Eq(3.1) it follows that the derivative

of the field does not transform covariantly,

3 (Oupi(x)) = (T)ij €a(@) Oupj(@) + (T%)ij 5 (%) Duéa()- (3-2)

This equation implies that our globally invariant Lagrangian, ﬁ((p, 0¢), is no longer invariant under the group, G(z),

of local transformations Eq(3.1). Indeed, we get for the change in the Lagrangian,

OL sos(@) + -0 6 (Bupi(a)) = G eala) + a(aagf(x))

5F = _oL
s 9 (Op1)

(T)ij pj(x) Opealx). (3.3)

Therefore, the conditions of global invariance, Eq(1.5), imply that the variation of £ does not vanish for non-

constant €, (x),
; oL
0L(z) = ——
= 50,00

This means that our matter field theory, £(¢, dp), is not invariant under the local group, G(x), of transforma-

(Ta)ij Py auea(-r)- (34)

tions Eq(3.1). To obtain an invariant Lagrangian, it is necessary to enlarge the original (globally invariant)



theory, ﬁ(gp, 0p),by introducing a new field
AJ(I)v J=12--,m, (35)
in such a way that the right-hand side of Eq(3.4) can be cancelled with the contribution from this new field

Aj(z). The compensating fields thus introduced are called gauge fields.

Now suppose that the new Lagrangian £(z) depends only on the fields A;(z) and not on their derivatives,
L(z) = L(#i, Ouspis A), (3.6)
L(i, 0upi, 0) = L (i, 0up0),
and consider the following inhomogeneous infinitesimal transformations
SAs(x) = FE* A (2)eq(2) + Gy 0"ea(T), (3.7
where F and G are some unknown constants to be determined later. The second (inhomogeneous) term in

Eq(3.7) has been introduced to cancel the right-hand side of Eq(3.4).

Now, the assumed invariance of £(p, 9, A) under the local gauge group G(x) reads

) L L

Inserting Eq(3.1), Eq(3.2) and Eq(3.7) in Eq(3.8) we get

oL oL oL oL oL
Thoj+ 57— 1550 + L FKaeg a — 17 Oeq(x) = 0.
(8 . j@] 8((9“(,01) ,uSDJ aAJ J K(CL'))E (;C)—l— (a(a ) J(pj 8A ) € ( )
(3.9)
Owing to the arbitrariness of the functions €,(x), the left-hand side of Eq(3.9) vanishes if and only if each

coefficient of ¢, and 0,¢, vanishes identically:

oL oL oL

Bos 1581 T (B0 1 w0 g PO A =0 (3.10)
nPi

oL oL

T 4 = A1
8(8“’30) 780] aA GJ 0. (3 )

What we are after next is to reveal the meaning of the index J carried by the field A;(x) and determine the
explicit A j-dependence of £. In order to determine that Aj-dependence uniquely, the number of equations
Eq(3.11) has to equal the number (m) of the fields Ay

m = dim (R(l’?’)) x dim (Lg") = 4n.

Also, the 4n x 4n matrix G}, ; must be non-singular with inverse matrix given by

(@ qo, =55 (G o, = o s (3.12)
We can use this to redefine the gauge field by
Bi(z) = (G As(2); As(x) = G%) Bl(x). (3.13)



In terms of the field B the gauge transformation Eq(3.7) becomes
§BY(x) = (C™.)" By (x) ea(x) + 0"ec(), (3.14)

where
(o)t = (G Bl Gl (3.15)

v C

For constant €,, therefore, the gauge fields transform according to
§BY(z) = (C*.)" € By (x). (3.16)

Therefore, for non vanishing (C%?.)*, the gauge fields contribute to the Noether currents of the global symmetry
group G and carry the corresponding charges. Thus, the gauge fields of the non-Abelian group G are self-
interacting (charged) fields. Before continuing the field theoretical study, let us see what we can learn from
the index structure of B¥#(x) and its transformation law Eq(3.14). Since B carries single space-time index,
therefore its field quanta are spin-1 vector bosons. The group index carried by B¥(x), means that the gauge
fields take values in the Lie algebra Lg", i.e., the theory contains as many gauge fields as there are generators.

Thus, from Lie algebra point of view, the field B# transforms by the adjoint map
ad(X) = 0, €,

where ¢, are the constant parameters of the group. C%, = (X?)b, are the matrix elements of the generators
in the adjoint representation.The fact that the structure constants form a representation of Lg™, can be easily

seen from their Jacobi identities. Thus
6B (z) = ad(X)? Bl (z) = C", ¢, B} (). (3.17)

Comparing this with Eq(3.16) we conclude that the numbers (C%.)" are related to the structure constants of
the group G by
(c®t)! = ot . (3.18)

L=

Using this result, the transformation law of the gauge field becomes
6B (z) = C", B}'(7) €a(z) + 0"ec(). (3.19)

This implies that the gauge bosons must be massless, i.e., Lagrangians with mass term M““B,,, BY are ruled

out.

Using Eq(3.1) and Eq(3.19), it is easy to show that the combination

Dty = 0"p; — T}, By »5, (3.20)
transforms by the representation matrices p(X®) = T of the matter fields ¢;, i.e., it is a covariant object,

5 (Dp;) = Tf eu(2) Doy (3.21)

We will re-derive these results (Eq(3.18), Eq(3.19) and Eq(3.21)) by field theoretical considerations using
Eq(3.10). So let us go back to field theory and rewrite Eq(3.11) in terms of the gauge field B#(x). Using



the relations Eq(3.13) and Eq(3.12), Eq(3.11) becomes

of . oL

T . —— —=0. 22
3(5“301) 17 Lﬂj(l‘)—f— aBg 0 (3 )

From this, Eq(3.22), we conclude that the gauge fields are contained in £ only through the combination,
Eq(3.20),
Dtyi(x) = 0" — T}: BY ¢j,

which is called the covariant derivative (the name will be justified below). Thus, a gauge invariant Lagrangian

should have the form
L(pi, Oupir Ay) = L(pi, Dppi) = L(pi, D). (3.23)

Therefore, the following relations must hold

oL oL oL
== _ __ "= _Taepk .24
dpi  Op; O (Dryg;) T (3.24)
oL oL
D (0rp;)  O(DHep;)’ (3.25)
Y or .
T (GTHL7. (3.26)

A, 0 (Dryy)

Thus, a gauge invariant theory, L(y,D,¢p), can be obtained from a globally invariant matter field theory,
[f((p, Ouyp), by replacing the ordinary derivative 0,,¢ with the covariant derivative D, . The second term in the
covariant derivative determines the coupling (interaction) between the matter fields ;(x) and the Lie algebra

valued gauge fields B¥(z).Indeed, by expanding L(p, D*¢) to first order in the coupling, we find

oL

L(i, Dp;) = L5, 0" ;) — EICTE) T3 j BY,
or, using Eq(1.9),

L(pi, D ;) = ﬁ(goi, oMpi) — Jy(x) Bl (2). (3.27)
Thus, the gauge fields couple to matter fields through the Noether currents of the global symmetry of the free

matter field Lagrangian ﬁ(gp, 0p). And L(p,Dyp) is made up of the free matter Lagrangian ﬁ(gp, Op) and the
interaction Lagrangian for the matter fields with the gauge fields BY(z),

Ling(z) = —J;(z) B (2). (3.28)

Notice that the matter field’s current can now be calculated from

oL
L(ps, D ;) = —=Ji(x) = — 72— T, (3.29)

aBg a(altwi) ij Pi

This means that the matter current J;; is no longer conserved in usual sense. Instead, it satisfies a covariant
conservation law which follows as a direct consequence of the invariance of L(p, Dy) under the global transfor-

mations

dpi(x) =T €a pj (), (3.30)
§BH(z) = C®, ¢, B (). (3.31)



Indeed, the invariance of £ implies

oL oL " b oL
0:6—%5%4—6(18“ <8(awTijnpj>—|—eaC CBg(z)aBg.
Using Eq(3.29), we arrive at the Noether identity for the Lagrangian L(p, Dy) :
oL
o dpi +ea VI () =0, (3.32)
where V¥,
VHrIE =0t s — C% Bl TS, (3.33)

is the covariant derivative in the adjoint representation. Thus, when the field equations are satisfied, Noether

identity implies that the matter current is covariantly conserved,

VL =0,

Next, we (as promised earlier) will use Eq(3.10) to show the covariant nature of the covariant derivative,
Eq(3.21), and determine the unknown constants (C%.)# in the transformation law of the gauge field Eq(3.14).
For that, let us examine Eq(3.10) term by term. From Eq(3.24), we can rewrite the first term in Eq(3.10)(after
changing the dummy indices) as

oL oL oL

TG o = = T8 o — —
Dpi R T 9 PR T 5 (D)

B (x) ¢; Ty, Tf.- (3.34)

From Eq(3.25), we find (after introducing the covariant derivative) for the second term of Eq(3.10),

oL oL

oL
——T5 Mo, = ———T5 DV — B! Ta TP 3.35
8((9“(,02) ik Pk 8(Dp‘901) ik Yk + 8(@”901) b(x) PiLik Lk ( )
Adding Eq(3.34) to Eq(3.35) and using the Lie algebra relation
4 Te. — Th T = [T, T, = C*. T (3.36)
ik T kj ik~ kj ’ i c iy
we find
oL oL oL oL oL
a4 2 qagn,— ZZe g, = qapng, o4 2=, Brsrgab e 3.37
a@z ij Pj + 8(3“(,01) ij ¥ 84,01 i Py + 8(7)“(,01) ij Pj + 8(7)“4,01-)% b “v i ( )
And finally we use Eq(3.26) to rewrite the third term in Eq(3.10) as
oL oL J oL "
S A = — T (G FROGh e By = ——————¢; By (C™.)!) T 3.38
aAJ J K P (D“%) i Pj ( )c J vK ~b a(D#@l) Pj Dy ( )V 50 ( )

where the definition Eq(3.15) has been used. Substituting Eq(3.37) and Eq(3.38) in the identity Eq(3.10), we

find
oc oc oc
“Zra o4 T A Dl — 2~ e, BY ab \H _ su ab
5575 %1+ 5y T D" = Gipmg 16 % B (o) —azcene). (3.39)

Thus, local gauge invariance demands that both sides of Eq(3.39) vanish identically. Indeed, the gauge invariance
condition for £(yp;, D" ;) reads

oL oL

5,C = 7Tij QDj Ea(l') + W

o) —
B 5§ (D'g;) = 0. (3.40)



By contracting Eq(3.39) with ¢,(x) and subtracting the result from Eq(3.40) we find
6 (DVi) = Ty ea(w) (DVp5) = Tl ealw) 5 By ((C0e))) = 0 C™.) (3.41)
Thus, the local gauge invariance of £ can be stated as

{(c)l =opc™.} & (0B = ™ ea B + 0.} & {8(D"pi) = T eal) (D)} (3.42)

We have already established the left to right implications (see Eq(3.18), Eq(3.19) and Eq(3.21)). The right to

left implications can, just as easily, be proven:
§(9"pi) — T (Bl bp; + 8Bl ¢j) = Tfs €0 Op; — T Ty BY @ €a-

Using Eq(3.1), Eq(3.2) and the algebra Eq(3.36), we find the transformation law of the gauge fields, Eq(3.19),
which, when compared with Eq(3.14), leads to

(c.)! = o1t

L=

4 Completing The Dynamics

We have, up to this point, being treating the gauge field as external (non-propagating) field. indeed, we saw that
the Lagrangian £(p, D*y) is made up of the free Lagrangian for the matter fields, ﬁ(gp, 0p), and the interaction
Lagrangian for the matter fields with the gauge fields, Eq(3.27) and Eq(3.28),

L(p, D"p) = L, 0"p) + Lipg- (4.1)

Let us now look for the possible, gauge invariant, Lagrangian for the gauge fields which depends on B¥(z) as
well as on their derivatives. Let it be denoted by Lo(B%,0*BY). The invariance condition for £y with respect

to the gauge transformations Eq(3.19), reads

9L
~ 9B

dLo
5 (0VBE) = 0. 4.2
OB+ g pm 0 (0B =0 (4.2)

0Ly

Inserting Eq(3.19) in Eq(4.2) and using the arbitrariness of the functions €,(x), €, (x), and O*0 ¢, (), we

find the following identities
0Ly

OBE

oL
Cc*. Bl + a(Tjoag) c, 9" Bl =0, (4.3)
dLo L0 et o

o5r T ranpy) O e Bl =0 (4.4)

oLy, oLy
9(0vBY) " 9(0#BY)

= 0. (4.5)

The last identity follows from symmetrizing the product

0Ly 1

auap,ea _ = { a'CO 8£0

9(ouBY) " 9(0vBh)

onw v
d (0 BE) 2 } 99" €al),

and indicates that the derivative of the gauge field B¥(z) can only enter the Lagrangian through the antisym-
metric combination
Bt (xz) = 0*BY — 0" B~. (4.6)

10



Substituting Eq(4.4) into the first term of Eq(4.3) and using C°?, = —C%,, we find

0Ly

50 57y (00" Bl ) By(a) + O 0" By ()} = 0. (4.7)

Anti-symmetrizing the indices (y,v), i.e., using Eq(4.5) or, which is the same thing, introducing B into
Eq(4.7), we find

1
37 Bafy @ {C*, ¢, B}'(x) By () — C*.C%, By (z) B (z) + C**. B} (z)} = 0. (4.8)
Interchanging the dummy indices (b <+ d) in the second term and then using C%, = —C%., we find
1
5 aBauV( ) {C«ab ,IW( )_|_ (Oabc Cdce + Cdac Cbce) B;;(JJ) Bg($)} =0. (49)

Finally, using the Jacobi identity

CvabC Cdce + Cdac Cfbc8 — 7cace dec, (410)
we find | or
= 0o, {BE (z) — G, Bl () B (x)} =0, (4.11)
2 OBY
o 1 0L, (Fiv)
- 1\Le ac 11i% _
278Fé“’(x) C*, F*(z) =0, (4.12)

where FF(z) is the Lie algebra-valued tensor field

FM(x) = 0" BY(z) — 0V B*(x) — C%, B}'(xz) By (x), (4.13)

(&

and
Ly(FI™) = Lo(BY, Bi¥) = Lo(BY, 9" BY). (4.14)

By contracting Eq(4.12) with €,(x), and comparing it with the invariance condition for £1(F),

0Ly spm —o, (4.15)

0Ly = ar OFe

we deduce that F/¥ transforms in the adjoint representation of L£g"
SFI (z) = C%, ey() FI(z). (4.16)
Indeed, we can, as a consistency check, obtain the same transformation law for F* by substituting Eq(3.19) in
SFM = §(0"BY) — §(0”B*) — C*, Bl 6B} — chl, (6B}') By,

and using the Jacobi identity Eq(4.10). Thus, a locally invariant Lagrangian for the gauge fields is a function
of the tensor F*¥ only and satisfies condition Eq(4.15). The choice of £;(F') satisfying Eq(4.15) is not unique.

The simplest Lorentz invariant and parity conserving Lagrangian, quadratic in F/*, has the form

o e B () Y (), (4.17)

Li(F) = 1

11



with a constant non-singular matrix ¢ on £¢™'. In order to have a real Lagrangian, the matrix g°® must be

real. Since
0L 1

g = ~1 0" +9") Moo B

we may take ¢*° to be symmetric matrix. Inserting Eq(4.17) in the gauge invariance condition, Eq(4.15), we
find
gbc CvadC _ _gdc Cabc. (418)

Clearly, this is a condition on the allowed £g". Indeed, if g?° acts as a raising operator for the indices on the
structure constants,
Cabc _ gcd Cabd, (419)

then the condition Eq(4.18) shows that the structure constants are antisymmetric in all three indices a, b and
d,
cobd — _cadb, (4.20)

This implies that L£g™ is a compact Lie algebra. With the aid of the Jacobi identity Eq(4.10), we can show that
the Cartan metric, defined by

g"" = —Tr{ad(X*)ad(X")} = —C*; C"., (4.21)

satisfies the gauge group condition Eq(4.18). Then, a Lie algebra is said to be compact if the Cartan metric
g is positive-definite: since the finite-dimensional representations of compact Lie algebras are all Hermitian,
T® = iX?, the Cartan metric g2 = Tr(T?T"?) is positive-definite as a bilinear form, because g%e e, = Tr(T - ¢€)?

is positive for any real €,. Below, the compact nature of Lg™ will be deduced on physical ground.

Now, if we rewrite the kinetic quadratic part,
1
—Zgab (0" BY — 0" BY) (0, By, — 0,B,p) ,
of the first term in Eq(4.17) as
]'ab;ti i]'abp,O Olabuu
+§g 3 BaauBbfig 5' BaﬁﬂBb +§g 3 Ba ayBMb,

we see that the signature of the matrix g*°(i.e., the signs of its eigenvalues) is related directly with the signs of
(quantum) state-space metric of (transverse) gauge bosons B¥. If g% has both positive and negative eigenvalues,
it would be almost impossible to eliminate the contributions from negative norm states. Therefore, unless all
modes in B¥are unphysical simultaneously, the Cartan metric must be of definite sign (in our case, positive
definite) as a bilinear form. This implies that our gauge group G should be compact. Then, we can diagonalize

and normalize the metric into the form
gab _ 5ab

With respect to this basis, we need not distinguish the upper and lower indices in the structure constants, and

the gauge group restriction Eq(4.18) shows that C'** is totally antisymmetric.

C«abc _ _Cacb _ Cabc (422)

Thus, the specific form, Eq(4.17), of £4(F'), which imposes the restriction Eq(4.18) on the allowed gauge group

1To be precise, Eq(4.17) with non-singular matrix g®® defines a correct Lagrangian only for the case with G being a semi-simple
Lie group: Since g%® is zero on any Abelian invariant subalgebra, Eq(4.17) does not reproduce the kinetic terms for Abelian
components which appear in the case of non-semi-simple L£g™.

12



G, together with the existence of physical modes in B restrict G to be compact. When the gauge group is

compact, the invariant Lagrangian for the gauge fields is called Yang-Mills Lagrangian [3],
1 a 3%
Lyy = ~1 Fi, FIY,  where (4.23)

a a a abc Rb nc
F2, = ,B%— 9,B% — 0" B B, (4.24)

is the Yang-Mills Field tensor. The Yang-Mills Lagrangian contains, beside the quadratic terms, the cubic and

the quartic terms in the gauge fields B?, i.e., the Yang-Mills field is self-interacting. The total Lagrangian of

I_l,’
the system of the matter fields ;(x) and of the gauge fields B¥(x) will be given by the sum of the original

matter field Lagrangian £ (¢, dp), the interaction Lagrangian between the matter and the gauge fields Eq (3.28)
and the Yang-Mills Lagrangian,

R 1 R 1
L(pi, 0pi, By, 0B,) = L(pi, 0p;) — J(x) By (x) — = F, i = L(pi, Dppi) —

1 F Fo, R (4.25)

4

with Jjj(z), given by Eq(1.9), being the matter field’s current of the global symmetry of L(p, 0¢).

5 Conserved Currents; First and Second Noether Theorems

In this section, we will state and prove the two theorems of Noether in the case of the theory L(¢p, ¢, By, 833).

Theorem 2. Noether’s first theorem: The Lagrangian density L(p, Op, BY, 0B") is invariant under the follow-

ing infinitesimal transformations

0pi() = €,0%pi(x) = Tf: €q @;(z), (5.1)
§BH(z) = €,0° B! (z) = C%. ¢, Bl (z), (5.2)

with arbitrary constant parameters €4, if and only if the following (Noether) identity holds

oL

— ) Hga =
55 0"+ 0" TH@) =0, (5.3)

where oL oL
Uz) = = T% p; ——C". By A
ju(x) a(auwl) i @J(x)—’—a(auBcV)C c b(x)’ (5 )

oL oL oL

Eiadip LY WS ag. apu

55, 'A< 5 8o+ S 8B (5.5)

Proof. The infinitesimal global transformations above induce the following change in the Lagrangian

D (691) + €0 D5 §0BY 4 ey — 05 gr(50BY).

a aE a
€ 0L =€, — 0% + €4 957 3" B)

oL
i 0 (0"p;)

After introducing the Euler derivatives for the fields ®4 = {p;, B%}, and owing to the arbitrariness of the

constant parameters €,, the above equation becomes

oL ( oL oL

o =_——§d = T% . ———__(o*,_ B . )
oL 54’,45 A+ O 30 ) U%(x)—l—a(aMch)C . b(x)) (5.6)

Thus 6L = 0 if and only if the right-hand side of Eq(5.6) vanishes identically (i.e., irrespective of whether or
not ®4’s are solutions of the field equations). O
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When the field equations are satisfied,
oL

== =0
3B,

Noether identity Eq(5.3) shows that the global symmetry current J¢ is conserved. Using the Yang-Mills La-
grangian £q(4.23) and the definition Eq(1.9) of the matter current, we can rewrite the current J of the global
symmetry of the total Lagrangian Eq(4.25) as

Tl (@) = Ji(x) + O By (2) Fy, (). (5.7)

The second term represents the Gauge fields contribution to the conserved current. Thus, for non-abelian

symmetry the charges carried by the gauge bosons are given by
¢ =, / @z Féy(z) Bl (x). (5.8)
Notice that, while the gauge-dependent currentJ; is conserved, the gauge-invariant (matter) current Jy; 1s not.

We will see that the matter field current satisfies covariant conservation law.

Theorem 3. Second Noether theorem: The Lagrangian L(p;, O*@;, B¥, 0¥ B¥) is invariant under the infinites-

imal transformations
dpi(x) = Tij €a(x) 5 (),
OBY(x) = C% e,(z) BY (z) + 0”e. (),

with arbitrary, twice differentiable, spacetime-dependent functions €,(x), if and only if the following relations
hold identically:

oc , L 0L\
@ 6 6 <6Bg> - 0, (59)
"I, (x) + I (z) =0, (5.10)
F, (z) = =F}, (). (5.11)
With Jj, and Iy, are defined by
: oL .
Tol@) = 5 + T (a)s (512)
a/ N OL oL ab oy
i = gang 90 anmy P
" oL
F, (z) = 90" B (5.13)

Proof. This does not require anything other that introducing the Euler derivatives for the fields and some

reshuffling of the terms:

6£ a v 6‘6 v Ta c VipC 1 C C v
5= { g 00a =0 () H O ot (354 O} 0t () 040

0Dy

Owing to the arbitrariness of functions ¢, (), the change in £ vanishes if and only if each coefficient of €., O¢,
and 0"0"¢, vanishes identically. Thus the invariance of £ is equivalent to the identities Eq(5.9), Eq(5.10) and
Eq(5.11). O

When the matter fields satisfy the field equations 6L/d¢; = 0, the identity Eq(5.9) becomes

5L 5L
r_ g -
spr OBl =0 <5 g) 0. (5.14)
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This means that the 4n quantities (6£/0B#) are interrelated by n equations, and hence, that the number of
independent quantities among (6L/dB*) is 3n in general. Owing to this constraint, the theory cannot determined
time evolution of the gauge field uniquely. The notion of quantum fields necessarily involves field operators or
their Green’s functions with some specified spacetime dependence determined by field equations. To quantize
the gauge field, therefore, it is necessary to break the local gauge invariance by some gauge fizing condition. Of
course, we encounter the same thing in the abelian gauge theory QED, however, what is new here is that the
Lagrangian, Eq(4.25), together with the gauge fixing term cannot define a meaningful quantum theory of Yang-
Mills fields with a unitary S-matrix. This is just an inevitable consequence of the non-linear self-interaction
of gauge fields due to the non-abelian nature of the theory: Unlike the abelian cases, the contributions from
the unphysical (longitudinal and scalar) modes to intermediate states do not exactly cancel out owing to the
self-coupling of B¥. Feynmann [4] and later DeWitt [5] found, in the perturbation theory, that this violation of
unitarity can be restated as the missing contributions of a pair of massless scalar fermions to closed loops in
the Feynmann diagrams. Subsequently, a clear explanation for the appearance of these fermions with strange
statistics was given by Faddeev and Popov [6] from the viewpoint of path-integral formalism, and since then,
these “particles” have come to be called Faddeev-Popov ghosts. Understanding the origin of these ghost fields in

the operator formalism will be the subject of next set of notes.

From Eq(5.10) and Eq(5.11) it follows that the “current” Jf, is conserved. However, this is not a new current.
For B! satisfying the field equations 6L/0BY = 0, the “current” Jj,defined by Eq(5.12) becomes identical to the
conserved current 7 associated with the global transformation of the first Noether theorem . Thus, there is

no new current associated with local gauge invariance. In the case of the Lagrangian Eq(4.25), F¢, is nothing

but the field strength Fg,. Thus, using Eq(5.7) we can rewrite Eq(5.10) as .
O'Fy, =—Ji(x) — C By Fy,, (5.15)
or, in terms of the covariant derivative V¥,
VYES, = —J; (). (5.16)
From this it follows that the matter current satisfies a covariant conservation law:
VAV ES, = Lo v Fuy ==V,
2
or, because of the total antisymmetry of the structure constants,
VHIE = L e g F, =0. (5.17)
2

6 Conclusions

The equirement that the Lagrangian be invariant under arbitrary local group of internal symmetry Eq(3.1)
forced us to introduce new massless vector bosons transforming in the adjoint representation of the gauge group
Eq(3.19). With no extra input other than gauge invariance, we were able to determine the form of interaction
between the gauge bosons and the matter fields Eq(3.28), and show how the locally invariant Lagrangian can be
deduced from the globally invariant Lagrangian Eq(3.23). We have also seen that the form of the Lagrangian
for the gauge fields Eq(4.17) together with the existence of physical modes in B¥(x) restricts the allowed gauge
group to be compact. And finally, we deduced, from the results of Noether second theorem Eq(5.14), that gauge

field theories are constraint systems and, due to self-interaction, a special care is needed to quantize the theory.
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