
Graphical Convolution Example
• Suppose that f(t) = g(t) where f(t) is the rectangular pulse depicted in 

figure, of height 1.
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Graphical Convolution Example

• Case 1: t < 0 
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• Case 2: 0 <= t< T
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• Case 3: 
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• Case 4: 
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Output
This image cannot currently be displayed.



















Tt
TtTtT

Ttt
t

ty

2           ,0
2   ,2

0           ,
0           ,0

)(



T0 t2T

y(t)

Example of a resistor?
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Graphical Convolution Example
• Convolve the following two functions:

• Replace t with τ in f(t) = -t +2 and g(t)
• Choose to flip and slide g(t)
• Functions overlap like this:
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Graphical Convolution Example
• Convolution can be divided into 5 parts

I. t < -2
• Two functions do not overlap
• Area under the product of the

functions is zero

II. -2  t < 0
• Part of g(t) overlaps part of f(t)
• Area under the product of the

functions is



Graphical Convolution Example

III. 0  t < 2
• Here, g(t) completely overlaps f(t)
• Area under the product is just

IV. 2  t < 4
• Part of g(t) and f(t) overlap
• Calculated similarly to -2  t < 0
• 3t2/2 -12t +24

V. t > 4
• g(t) and f(t) do not overlap
• Area under their product is zero
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Example

• Convolution of two gate pulses each of height 1
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Example

0           1         2             3                t

f * g Case 1: 0 <= t < 1
Case 2: 1<= t <=2
Case 3: 2 <= t <= 3
Case $: t > 3



Properties of LTI systems
• Commutative Property: Roles of the input and impulse response can be 

interchanged
• CT Systems:

• DT systems: 
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Properties of LTI systems
• Distributive

• CT systems

• DT systems
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Properties of LTI systems
• Associative

• CT systems

• DT systems
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• Memoryless: A LTI system is memoryless if its impulse response is

• Causality: An LTI system is causal if its output does not depend on future 
values of input. Or, output at [n] must not depend on k>n. 

• Stability: A LTI system is stable if its impulse response
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Example
• Find if memoryless, causal and stable?
a) h(t) = u(t+1) – u(t-1)
b) h(t) = u(t) – 2u(t-1)
c) h(t) = e-2|t|

d) h(t) = eatu(t)
e) h[n]=2nu[-n]
f) h[n] = e2nu[n - 1]



• Invertibility: A LTI system is invertible if

• Find a causal inverse system of y[n] = x[n] + ax[n-1]. Recall the echo 
problem or multipath communication problem. A signal may travel 
through different paths.

• Also find if inverse system is stable?
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RADAR Range measurement

• Suppose we transmit an RF pulse and 
determine the round trip time delay

We need to compute the received signal and 
channel’s impulse response.
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Matched filter

• We need to compute β, towards this we need 
to match the received signal with the 
transmitted signal.

• We can build an LTI system, such that the 
impulse response is
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Example
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Example

• If y(t) denote convolution of following two 
signals
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