I use the Heaviside-Lorentz units (i.e., rationalized Gauss units).

First of all the gauge transformation should read
A =i—%y, ¢f:¢+;atx. M
Then both four-potentials create the same em. field:
VxA'=VxAi=B, —%gs’—%aj’:—%gs—%aﬁzﬁ. @
In the following we’ll switch between ¢ and x° = x, = ct as is convenient. The four vector x = (x#) =
(x%,%)=(ct,%).

Writing E and B in terms of the potentials makes these fields fulfill the homogeneous Maxwell equati-
ons,

V-B=0, VxE+3B=0, 3)
autmoatically. Here we write d, = d /dx*.

The potentials are then determined by solving for the inhomogeneous Maxwell equations

UxB—QE=L = 0A+V(V-A+ap)="L, 4)
c C
V-E=3V-A+Ad=—p. )

Of course, there is no unique solution due to the above mentioned gauge invariance, but that’s not bug
but a feature! The entire first principles of electromagnetism hinge on gauge theory. It’s also mathema-
tically unavoidable, because massless vector fields as we know them from phenomenology can only be
realized as gauge fields. This is derived from representation theory of the Poincare group underlying
all relativistic physics.

Thus in practice you have to fix a gauge by some auxilliary condition. The Lorenz condition
9,A=GA°+V-A=0, (A*)=(¢,A) ©)

is particularly convenient, because it’s manifestly Lorentz covariant and decouples the components of
the four-potential, leading immediately from (4) and (5) to convenient wave equations,

1. . -
OA* =¥, (j*)=(cp,j), D=, "= A %)
In (5) we use the Lorenz condition (6) to write

AV -A=—32A°. 8)

Among the solutions are particularly the retarded potentials,

Al(x) = 1 J J.H(XO_W—E/L??/)_ )
R3

4 |x — x|
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Taking the appropriate derivatives to get the field components which are unique solutions given the re-
tardation condition you get the gauge-independent retarded electromagnetic field (known as Jefimenko
equations, which are nicely discussed in the Wikipedia).

You can use other gauges. One pretty common gauge constraint is Coulomb gauge,
V-A.=0. (10)

This leads to the electrostatic equation for the scalar potential (which is the reason for the name “Cou-
lomb gauge”)
Ade=—p, (1)

It has a solution that looks like like in an “action-at-a-distance theory”,

belt, )= 1f pLx) (12)

T4 Jp [F =¥

However, also the equation for the vector potential changes:
- 1- = 1+
DAc=-J —Vadc= L (13)

We have L oo

V1=V j—GA¢c=V-j+0,p=0, (14)
due to charge conservation (continuity equation), which is an integrability condition for the Maxwell
equations and must be fulfilled for consistency reasons anyway (if it’s not fulfilled, also the retarded

potentials in the Lorenz gauge to not give solutions of the Maxwell equations!). This shows that 7| isa
solenoidal field, also called “transverse”, which justifies the subscript L.

Then, if you want retarded fields, one should solve the wave equation for A with the retardation
condition, leading to

1 f JL(°— R =%, %)
]R3

EC(x)_ |)-C>_9‘C’/| : (15)

" 4nc

That we get the same retarded fields becomes clear when we compare the Coulomb-gauge potentials
with the Lorenz-gauge potentials.

Our goal is thus to find a scalar gauge field jy such that

pc=¢+y, Ac=A—-Vy. (16)

To that end we use the equations of motion for the Lorenz-gauge and the Coulomb-gauge potentials
(7,11,12). Acting with the box operator on the first equation of (16) leads to

Odc = (32 —A)pe = lpc+p=0d+ 0y =p+ a0y = Oy = Fdc (17)

We do not need to find a general solution for y. Any solution consistent with the solutions for the
potentials in the two gauges is sufficient. Thus we simply integrate (17) once wrt. x°, leading to

Oy = %%c (18)



Now we have solved the wave equation always in terms of the retarded Green’s function. Thus we try

this ansatz also for y:
0__|1z__3/ 2/
)((x>_ if d33—580¢C(x |x X |7x ) (19)
]R}

4n |X —X|

This for sure fulfills the first equation (16). Nowe we have to show that it also fulfills the second equa-
tion. Thus we evaluate the gradient of (19). To that end we introduce a & distribution to simplify
the derivative, which in Eq. (19) operates both on the denominator and due to the dependence of the
retarded-time argument of the integrand:

S(xO/—xo+|§—9?/|)> 20)

x—x'|

== | dv e % (

Now the gradient operates on a function of |X — x| and thus we can substitute V by —V’. Then, with
an integration by parts we get

- 1 S(xP—xY+ X —¥)) =
Vy(x)=— chﬁx’ = |;_z/||x Do g, (21)

:47r

Now according to (13) 30’%’¢C(x’) = [j(x')—j,(x")/c] and thus, after finally integrating out the &
distribution again, we get
IR e DAt i (S TT P PI

47 )gs % —%| ¢ 22)

= Ao(x) = Alx)— Vy(x).

y(x)=—

This completes the proof that indeed y is the gauge-transformation function between the Lorenz and
Coulomb gauges. Thus also the Coulomb gauge, despite the non-retarded nature of the scalar potential
& in this gauge, finally leads to the same retarded solutions for the physical fields E and B as the Lorenz
gauge.

This shows that the electromagnetic field is uniquely defined by Maxwell’s equations and the boundary
and initial conditions. To fulfill a general initial condition, of course one has to add an appropriate
homogeneous solution to the linear partial differential equations of the potentials.



