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FIGURE 4.8.
Pure bending of sections with one axis of symmetry.

of symmetry. Note that the cutting-plane stresses marked “Omax are obtained from Eq.
(4.6) by substituting c for y, where c is the distance from the neutral axis to the extreme
fiber. Often the section modulus Z (defined as the ratio I/c) is used, giving the equation
for maximum bending stress as

Ooax = M/Z @.7

For a solid round bar, 7 = #d*/64, c = d/2, and Z = 7d®/32. Hence, for this
case

Oonx = 32M/nd’ (4.8)

Properties of various cross sections are given in Appendix B-1.

Figure 4.8 shows bending of sections having a single axis of symmetry, and where
the bending moment lies in the plane containing the axis of symmetry of each cross
section. At this point the reader will find it profitable to spend a few moments verifying
that the offset stress distribution pattern shown is necessary to establish equilibrium in
Fig. 4.8b (i.e, ZF = Lo dA = 0,and SM = M + To dA y=0).

4.6 PURE BENDING LOADING, CURVED BEAMS

When initially curved beams are loaded in the plane of curvature, the bending stresses
are only approximately in accordance with Egs. (4.6)—(4.8). Since the shortest (hence
stiffest) path along the length of a curved beam is at the inside surface, a consideration
of the relative stiffnesses of redundant load paths suggests that the stresses at the inside
surface are greater than indicated by the straight-beam equations. Figure 4.9 illustrates
that this is indeed the case. This figure also shows that equilibrium requirements result
in the neutral axis shifting inward (toward the center of curvature) an amount e, and
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FIGURE 4.9.
Effect of initial curvature, pure bending of sections with one axis of symmetry.

the stress distribution becoming hyperbolic. These deviations from straight-beam
behavior are important in severely curved beams, such as those commonly encountered
in C-clamps, punch press and drill press frames, hooks, brackets, and chain links.

To understand more clearly the behavior pattern shown in Fig. 4.9¢, let us develop
the basic curved-beami stress equations. With reference to Fig. 4.10, let abcd represent
an element bounded by plane of symmetry ab (which does not change direction when
moment M is applied) and plane cd. Moment M causes plane cd to rotate through angle
d¢ to new position cd’. (Note the implied assumption that initially plane sections
remain plane after loading.) Rotation of this plane is, of course, about the neutral bend-
ing axis, displaced an as-yet-unknown distance e from the centroidal axis.

The strain on the fiber shown at distance y from the neutral axis is
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FIGURE 4.10.

Curved beam in bending.
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Ryl ¢ I

(ra + )0

For an elastic material, the corresponding stress is
= Ey d¢

(ra + )0

€

49c.

TF =0 JadA=m DL
¢ r.+y
and, since E # 0,
yda _
r,ty
Edyp [ y*dA
¢ r,+y

0

e c—

M =0 J-ayd= =M

2o [ yaarn [ 225

! centroid, the integral has a value of eA.)
' Substituting the above expressions into Eq. (€) gives

T
sTResses L€ —

(a)

(b)

Note that this equation gives a hyperbolic distribution of stress, as illustrated in Fig.

Equilibrium of the beam segment on either side of plane cd (Fig. 4.10) requires

()

(@

The quantity y*/(7, + ¥) in Eq. (d) can be replaced by y — ry/(r. + ), giving

(o) (e

“Tion

is equal to e4. (Note that this integral would be equal to zero if y were measured from

o5
The second integral in Eq. (¢) is equal to zero because of Eq. (c). The first integral (‘,f, i
the centroidal axis. Since y is measured from an axis displaced distance e from the \

|
0

Ed M
M=—T¢£eA or E=d¢fA
Substituting Eq. (f) into Eq. (b) gives —~
My
| 7= eAlr, + ) &
! Substituting y = —¢;and y = ¢ in order to find maximum stress values at the
inner and outer surfaces, we have
| —Mc,; — Mg,
| T e — ) edr
Mc, Mco

%o = eA(r, + co) 3 eAr,

4 The signs of these equations are consistent with the compressive and tensile stresses
produced in the inner and outer surfaces of the beam in Fig. 4.10, where the direction
of moment M was chosen in the interest of clarifying the analysis. More commonly, a
positive bending moment is defined as one tending to straighten an initially curved
beam. In terms of this convention:
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1 g At = —_— d — 5 [
/'17[ 272 k -b{h :’-'.ntr v eAr, - O"‘o e eAro i (4 9)

Before using Eq. (4.5), it is necessary to develop an equation for distance e. Begin-
ning with the force equilibrium requirement, Eq. (c), and substituting p for (r, + »):

ydA

I =0
P
But y = p — r,; hence:

0, or

fd,,_jznﬂ=o
p

A=r,,J.dA/p or r,=

Distance e is equal to 7 — r,; hence:

J'(p—;,.)dA=

J dA = A; hence,

A
Tda/p ®

__4
JdA/p
Stress values given by Eq. (4.9) differ from the straight-beam “Mc/I” value by a

curvature factor, K. Thus, using subscripts / and o to denote inside and outside fibers,
respectively:

e=r

(4.10)

o = K,MC/I = K,M/Z and Gy = _KoMC/I = _KOM/Z (4.]1) ,

Values of K for beams of representative cross sections and various curvatures are
plotted in Fig. 4.11. This illustrates a common “rule of thumb”: “If 7 is at least 10 times
c, inner fiber stresses are usually not more than 10 percent above the Mc/I value.”
Values of Ko, K;, and e are tabulated for several cross sections in [8). Of course, any
section can be handled by using Eqgs. (4.9) and (4.10). If necessary, the integral in Eq.
(4.10) can be evaluated graphically. Use of these equations is illustrated by the follow-
ing sample problem.

SAMPLE PROBLEM 4.1

A rectangular beam has an initial curvature, 7, equal to the section depth, &, as shown
in Fig. 4.12. How do its extreme-fiber bending stresses compare with those of an oth-
erwise identical straight beam?

Solution

1. For the direction of loading shown in Fig. 4.12, the conventional straight-beam
formula gives
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FIGURE 4.11.
| Effect of curvature on bending stresses, representative cross sections. (Extracted from [8].
See section 8.1 of [8] for further details and other sections.)
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| 2. From Eq. (4.10):

e=r— —h——h-=h<l—i> [
IdA/p bJ‘ dp/ ]n (rO/r‘) ]n3 I

= 0.089761A
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FIGURE 4.12, _
! Rectangular bar bent to radius of curvature, r, equal to section depth, A

i (giving r/c = 2).
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FIGURE 4.13.
Paper pad illustrating radial tension in a curved beam loaded in bending.

3. From Eq. (4.9):
s M(0.5h — 0.089761k) _ 9.141M
1= T (0.089761h)(bh)(0.5k)  bk?
M(0.5h + 0.089761k) _  4.380M

% = T(0.089761A)(bh)(1.5k) bk
4. From Eq. (4.11) with Z = bh?*/6:
,=&16;“=1.52 and K.,=f‘—'%89=0.73 =

(These values are consistent with those shown for other sections in Fig. 4.11.)

Note that the stresses dealt with in this article are circumferential. Additionally,
radial stresses are present that are, in some cases, significant. To visualize these, take
a paper pad and bend it in an arc, as shown in Fig. 4.13a. Apply compressive forces
with the thumbs and forefingers so that the sheets will not slide. Next, carefully super-
impose (with the thumbs and forefingers) a small bending moment, as in 4.13b. Note
the separation of the sheets in the center of the “beam,” indicating the presence of
radial tension (radial compression for opposite bending). These radial stresses are small
if the center portion of the beam is reasonably heavy. But for an I-beam with a thin
web, for example, the radial stresses can be large enough to cause damage—patticularly
if the beam is made of a brittle material or is subjected to fatigue loading. Further
information on curved beam radial stresses is contained in [8] and {9].

47 TRANSVERSE SHEAR LOADING IN BEAMS

Although the average transverse shear stress in beams such as the shaft in Fig. 2.12 i8
equal to ¥/ A (i.e., 1580 Ib divided by the cross-sectional area in the critical shaft section
shown in Fig. 2.12), the maximum shear stress is substantially higher. We will now
review an analysis of the distribution of this transverse shear stress, with emphasis on
an understanding of the basic concepts involved.

Figure 4.14 shows a beam of an arbitrary cross section that is symmetrical about
the plane of loading. It is supported at the ends, and carries a concentrated load at the
center. We wish to investigate the distribution of transverse shear stress in a plane
located distance x from the left support, and at a distance y above the neutral axis. A
small square element at this location is shown in the upper-right drawing. The right



