
In this 3-part series, I want to motivate the (re)introduction of the cosmological constant Λ into 
Einstein's equations of general relativity (GR) per the Supernova Cosmology Project (SCP) 
Union2.1 type Ia supernova data. As you probably know, this discovery won Perlmutter, 
Schmitt, and Riess the 2011 Nobel Prize in Physics "for the discovery of the accelerating 
expansion of the Universe through observations of distant supernovae." Λ is referred to as “dark 
energy” and as we will see in Part 2 it leads to the accelerating expansion of the universe. In this 
Insight (Part 1 of the series), I will introduce Einstein-deSitter (EdS) cosmology. In Part 2, I will 
introduce ΛCDM cosmology (essentially EdS + Λ). In Part 3, I will introduce the notion of 
distance modulus in astronomy and fit the SCP Union2.1 type Ia supernova data (distance 
modulus versus redshift) with both of these models. This will make it clear why astronomers 
began to take seriously the need for Λ even though Einstein had earlier retracted his introduction 
of Λ as "the greatest blunder of my career." Let's begin! 

To review from my Insight General Relativity and the Big Bang, Einstein’s equations (EEs) of 
GR are: 
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where G  is called the Einstein tensor and is a very complicated collection of the spacetime 

metric g  to include its first and second derivatives in the four coordinates of spacetime (see 

below). In fact, the LHS of EEs has thousands of g  terms when written in its most general 

form. But, cosmology solutions of EEs make simplifying assumptions which greatly reduce the 
complexity. In fact, we will have only two ordinary differential equations in two functions of one 
variable for EdS and ΛCDM cosmologies. Expanding G  in Eq. (\ref{EE1}) into its constituent 

terms we have 
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where R is the scalar curvature and is given by the Ricci tensor R  as follows 
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Whenever you see a repeated upper and lower index you have an implied summation over all 
four coordinate values (spacetime is 4-dimensional, 4D). g  is the inverse of the metric g , 

which is what we want to solve EEs to find. In EdS cosmology, one assumes that 4D spacetime 
can be foliated into flat spatial hypersurfaces of homogeneity (same at every location) and 
isotropy (same in every direction). With these simplifying assumptions, the metric can be written 
with just one unknown function of one variable ( )a t  in Cartesian coordinates as 
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To picture what this metric describes, imagine a balloon with a coordinate grid drawn on it. As 
the balloon inflates or deflates, the size of the grid increases or decreases, respectively, but the 
"co-moving" coordinate distance between any two points remains the same. 

 

To get the actual distance from the coordinate distance, you would need to multiply the 
coordinate distance by a "scaling factor," that scaling factor is ( )a t . The non-zero components of 

the metric are then 2
00g c   and 2
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1x x , 2x y , and 3x z . Thus, the non-zero components of g  are 00
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Now, to finish setting up EEs we need to compute the Ricci tensor R  by contracting indices of 

the Riemann curvature tensor R
  

       R R
x x

 
    

      

 
       

 
 

where the Christoffel symbol 
  is constructed from the metric, its inverse, and derivatives of 

the metric per 
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These equations account for the LHS of EEs G , so now we need the stress-energy tensor T  

(SET) for the RHS. Given the assumed symmetry of the metric, the SET must be that of a perfect 
fluid. Einstein and deSitter assumed the pressure of that perfect fluid is zero, leaving only one 
non-zero term in T  for a pressureless dust with energy density   (called a “dust-filled” model) 
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There are then only two independent EEs in the two functions ( )a t  and ( )t  
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where I am using "geometrized units" 1G c  . Using these equations, we find 
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giving these two differential equations to be solved for ( )a t  and ( )t  
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Eq. (\ref{E2}) can be written 
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so that  2a a  is a constant. Multiplying Eq. (\ref{E1}) by 3a  gives us 

 2 33 8a a a  

Thus, we see that 3a  is a constant, which makes sense because it simply means that the amount 
of mass in a co-moving volume of space remains fixed (see Section 3.1 in this Insight by 
Arman777). We're not concerned with the exact functional form for ( )t , we're only concerned 
with finding ( )a t  and we get that from solving Eq. (\ref{E2}). That's an ordinary second-order 
differential, so the particular solution requires two boundary conditions. The standard choice is 

(0) 0a   and ( ) 1oa t   where ot  is the current value of the coordinate time t  which is the proper 

time for co-moving observers (those with fixed coordinate position). ot  is therefore taken to be 

the age of the universe. Eq. (\ref{E2}) is separable via Eq. (\ref{E2a}), so this is very easy to 

solve giving 
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. This tells us that the universal acceleration is always negative and 

slowing to zero as t  , since 

2/3

4/3

2 1 1

9 o

a
t t

 
   

 
  

It's analogous to an object being ejected at escape velocity (see Part 3 in this Insight by 
Arman777). We'll compare this to the situation in ΛCDM cosmology in Part 2 of this series 
where we will see that a  in that case starts negative but changes to positive. That happened 
when the universe was about 54% of its current age for our universe (see p. 6 in this publication). 
Now let us use our solution for ( )a t  to find some kinematics between co-moving observers who 
exchange photons. 

Without loss of generality, we may assume we are at the coordinate origin receiving the photon 
from some distant co-moving emitter on the x  axis. The "proper distance" between us at 0x   
and a co-moving emitter at ex X  is ( ) ( ) er t a t X , as I explained earlier. That is to say, if you 

stopped the expansion of the universe at time t  and traveled from 0x   to ex X , then you 

would have travelled a distance of ( ) ea t X  (see Section 2.1 in this Insight by Arman777). We 

will compute the proper distance : ( )o or r t  to eX  when the photon is received, the proper 

distance : ( )e er r t  to eX  when the photon was emitted, the time et  when the photon was 

emitted, the Hubble recession velocity of the emitter today  :o o

dr
v t

dt
 , and the Hubble 

recession velocity of the emitter when the photon was emitted  :e e

dr
v t

dt
  as functions of the 

redshift z  of the photon and age of the universe ot . 

The redshift of the photon is given by (see Section 2.2 in this Insight by Arman777) 
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where of course 
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Eqs. (\ref{redshift}) and (\ref{ae}) immediately give us 
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By definition, we have o o e er a X X  . To get eX  we note that the photon takes a null path from 

eX  to 0x  , i.e., 2 0ds   for the photon path. The metric then gives us 
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for the photon path. This means 
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noting that the photon is moving in the negative dx direction. Eq. (\ref{Xeqn}) with Eq. 
(\ref{ae}) then give us 
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Accordingly, the farthest points we can see (we could have received a photon from) would be at
3o or ct  today, corresponding to an infinitely redshifted photon emitted at 0t   and received 

only today at ot t . That distance 3 oct  is called the "particle horizon" aka "the edge of the 

observable universe" (see this Insight by Arman777). Notice that the particle horizon is three 
times farther away than the distance the photon traversed, i.e., oct  corresponding to a local 

photon speed c  times ot . That's because space is expanding while the photon is moving towards 

us, so much of the space between us and the emitter was created behind the photon as it made its 
journey. 

To get the distance to the emitter at time et  we have 
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To get the Hubble recession velocity of a co-moving observer at x X  relative to us, we have 

( ) ( ) ( ) ( )
dr a

v t a t X aX H t r t
dt a

   
  

Eq. (\ref{hubblelaw}) is called "Hubble's law" and 
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 is the Hubble parameter (see Part 2 in 

this Insight by Arman777). The value of the Hubble parameter today is called the Hubble 
constant and denoted oH . Plugging ot t  into Eq. (\ref{hubblelaw}) we obtain 
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Thus, objects at the edge of the observable universe are receding at twice the speed of light. This 
does not violate special relativity, which continues to hold locally in GR. Here is a nice 
article explaining this and other misconceptions about Big Bang cosmology that appeared 
in Scientific American in 2005. Finally, to get ev  we have 
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As an example, let us evaluate the kinematics for a galaxy with redshift of z  = 11.9 discovered 
in 2012 (see article here). We'll use ot  = 13.82Gy, obtained from the Planck telescope in 2013 

(see article here). Note that "Gy" is read "billion years," since G = 910  and y stands for 
"years."  Plugging ot  and z  into Eq. (\ref{X}) we obtain or  = 29.9Gcy, which is about 72% of 

the way to the particle horizon, 41.5Gcy away. Here, "Gcy" is read "billion light-years," since G 
= 910 , c  is the speed of light, and y stands for "years." These conventions make the kinematical 
equations easy to use. Eq. (\ref{re}) gives us er  = 2.32Gcy, Eq. (\ref{vo}) gives us 1.44ov c , 

Eq. (\ref{ve}) gives us 5.18ev c , and Eq. (\ref{te}) gives us et  = 0.298Gy = 298My (where M 

= 610  so "My" is read "million years"). 

So, the complete picture is as follows. The image we are seeing in the 2012 article was emitted 
when the universe was only 298 million years-old by a primitive galaxy that was 2.32 billion 
light-years away from the infant Milky Way. That primitive galaxy was being carried away from 
our location at a speed of over 5 times the speed of light by the expansion of the universe. Today, 
as we receive the image, the universe is 13.82 billion years-old and that galaxy is presumably a 
mature galaxy located 29.9 billion light-years from us and it is being carried away from our 
location at a speed of 1.44 times the speed of light by the expansion of the universe. 



In Part 2 of this series, I will solve EEs for the counterparts to these EdS kinematics when a 
cosmological constant Λ is added to the EdS assumptions. In Part 3, I will explain the concept of 
distance modulus and use these cosmology models to fit the SCP Union2.1 type Ia supernova 
data. This will show why astronomers began to believe that a cosmological constant is necessary. 

  

 

 


