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Abstract 

The theoretical model proposed by Einstein to describe the phononic specific heat of 

solids as a function of temperature consists the very first application of the concept of energy 

quantization to describe the physical properties of a real system. Its central assumption lies in the 

consideration of a total energy distribution among N (in the thermodynamic limit 𝑁 → ∞) non-

interacting oscillators vibrating at the same frequency (ω). Nowadays, it is well-known that most 

materials behave differently at the nanoscale, having thus some cases physical properties with 

potential technological applications.  Here, a version of the Einstein’s model composed of a finite 

number of particles/oscillators is proposed. The main findings obtained in the frame of the present 

work are: (i) a qualitative description of the specific heat in the limit of low-temperatures for 

systems with nano-metric dimensions; (ii) the observation that the corresponding chemical 

potential function for finite solids becomes null at finite temperatures as observed in the Bose-

Einstein condensation and; (iii) emergence of a first-order like phase transition driven by varying 

N. 

 

 

 

 

 

 

 

 

** Present Address: Institute of Semiconductor and Solid State Physics, Johannes Kepler 

University - Linz, Austria. 

Corresponding author e-mail: alcastil@ufscar.br 

mailto:alcastil@ufscar.br


2 
 

1 Introduction 

The Einstein model [1] encompasses basic principles of Thermodynamics, Quantum and 

Statistical Mechanics to describe the specific heat of solids. Whereas this model does not exhibit 

“perfect” quantitative performance [2], it is the very first realistic solid state model to consider the 

effect of the crystal lattice vibrations on the thermodynamic properties, see e.g. [3, 4]. As a matter 

of fact, there are only a few realistic systems, whose multiplicities can be calculated using 

elementary methods, see e.g. Ref. [5] and references cited therein. Essentially, the model 

proposed by Einstein in 1907 [1] to describe the thermal properties of a simple crystalline solid, 

treating the solid as an array of atoms consisting of independent three-dimensional harmonic 

oscillators, is still of great interest [3, 4]. 

The aim of this work is to extend the model proposed by Einstein for the case of finite 

number of harmonic oscillators. To this end, mathematical functions describing analogous 

thermodynamic properties for finite solids such as the specific heat and the chemical potential 

were deduced. Although exhibiting, for 𝑁 → ∞, the thermodynamic behavior well-known from 

textbooks [6], such analogous functions have the advantage of being defined for any N, which 

allows one to explore how close to the thermodynamic behavior the properties of solids with low 

numbers of particles can be. In other words, the introduction of analogous thermodynamic 

functions extends the range of applications of thermodynamic, statistical and quantum mechanics, 

from macroscopic to microscopic scales. 

Given the high interest in the physical properties of nano-materials, several models have 

been proposed to explain the peculiar properties of finite solids. Among them, it is worth 

mentioning reports taking into account surface effects [7-9], the form of the nanoparticles [10] 

and the presence of impurities [11]. Following Einstein’s original framework, the model proposed 

here is based on how the total energy of the system of interest is distributed among their 

constituting oscillators, whose description is presented in the following. Initially, a closed-form 

function S, analogous to the thermodynamic entropy was obtained for systems with a finite 

number of particles (one-dimensional harmonic oscillators), see Section 2 for details. By taking the 

derivative of S with respect to the energy E, one obtains the analogous thermodynamic 

temperature as a function of E for finite systems, i.e. E, N) = (∂S/∂E)-1. Then, by numerically 

differentiating E(N) with respect to  the specific heat as a function of N, namely N for finite 

systems is deduced. Similarly, by taking the derivative of the entropy in relation to N, and 

employing a discrete form of the Leibniz integral rule (see Appendix B), the function m, analogous 

to the chemical potential for finite systems, was obtained. 

Essentially, the main findings achieved in the present work are: (i) for different finite N, 

the vs. curves reproduce qualitatively the experimental behavior observed in the limit of low ; 

(ii) m(converges quickly (upon increasing N) on the thermodynamic behavior of chemical 

potential (specific heat) even for low values of N; (iii) while the thermodynamic chemical potential 

is null only for 𝜏 → 0, the function m for finite N can be null even at finite temperatures (𝜏0), with 
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𝜏0𝑘𝐵

ℏ𝜔
 being numerically equals to the inverse of the harmonic series, which converges slowly to 

zero as N grows; 𝑘𝐵 and ℏ are, respectively, the Boltzmann and Planck constants, 𝜔 stands for the 

oscillators vibrational frequency. Furthermore, the present model can represent a bridge between 

finite systems and the thermodynamic limit by considering different values of N. Yet, the model 

can be employed in the description of the phononic specific heat of small clusters or nano-

systems.  Before starting with the theoretical discussion we stress that the physical quantities to 

be derived for finite systems are analogous to those well-known from text-books for the 

thermodynamic limit. The same holds true for the discussion about the phase transition like 

behavior to be discussed in Section 3.4. Yet, we stress that the present approach can be employed 

for one-, two- and three-dimensional systems as well, since that in the frame of Einstein’s model 

the oscillators are uncoupled and thus the dimensionality and the arrangement of the system are 

no longer relevant. 

 

2 Theory 

The number of accessible eigen-states, Ω, in a solid can be obtained by considering the 

sharing of M (= E/ℏω - N/2) energy quanta among N non-interacting oscillators. This approach is 

frequently discussed in the literature [6] and it is given by: 

Ω (E,N)=  
(𝑀+𝑁−1)!

𝑀!(𝑁−1)!
=  

(
𝐸

ℏ𝜔
+

𝑁

2
−1)!

(
𝐸

ℏ𝜔
−

𝑁

2
)!(𝑁−1)!

,                 (1) 

For N ≥ 2, ln (Ω) can be reorganized exactly as (see Appendix A for generic M = F(E)):  

   ln(Ω(E,N)) = ∑ 𝑙𝑛𝑁−1
𝑖=1 (

𝐸

ℏ𝜔
−

𝑁

2
+𝑖

𝑖
).    (2) 

The analogous to the energy and entropy per particle functions in the thermodynamic 

limit are readily obtained from the definitions u ≡ E/N and s ≡ S/N, respectively. By considering S = 

kB ln(Ω), it turns out that:  

s ≡ S/N=
𝑘𝐵

𝑁
∑ 𝑙𝑛 (

𝑢

ℏ𝜔
−

1

2
+

𝑖

𝑁
𝑖

𝑁

)𝑁−1
𝑖=1 .    (3) 

Using the relation s/u = S/E = 1/, an expression can be found for the intensive 

function τ, analogous to the thermodynamic temperature: 

 
1

𝜏
=

𝑘𝐵

ℏ𝜔
∑ (

𝐸

ℏ𝜔
−

𝑁

2
+ 𝑖)

−1
𝑁−1
𝑖=1 =

𝑘𝐵

𝑁ℏ𝜔
∑ (

𝑢

ℏ𝜔
−

1

2
+

𝑖

𝑁
)

−1
𝑁−1
𝑖=1 .  (4) 

The functions E = E(τ,N), or u = u(τ), cannot be obtained analytically by simple inversion of the Eq. 

(4) for N > 4 since it involves polynomials of fifth or higher degree. However, numerical techniques 

for root finding problem as, for instance, Newton-Raphson can be used to obtain these functions 
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with arbitrary precision. s and u are given in Table1 for different values of N. It is worth mentioning 

that u cannot be less than 
ℏ 𝜔

2
 since the zero point energy is the lowest value possible, namely the 

entropy goes to zero when u =  
ℏ 𝜔

2
 . The behavior of uN() for various values of N is depicted in 

Fig.1.  

 

 

Figure 1 – uvs  for finite values of N (= 2, 3, 5, 10, 50 – black lines) and for N → ∞ (red line). The 

blue line indicates the classical energy u = kBT while the dashed line indicates the zero-point 

energy (
ℏ 𝜔

2
) . 

 

Table 1 The analogous energy (u) and entropy (s) per particle for some values of non-interacting 

one-dimensional oscillators N (and Neff).

N Neff=N±N1/2 s u u→ 0 s(u→
ℏ 𝜔

2
 u→ ∞

2 2±1.41 
1

2
𝑘𝐵 𝑙𝑛[

2 𝑢

ℏ 𝜔
] 

1

2
𝑘𝐵 𝜏 

ℏ 𝜔

2
 0 

1

2
𝑘𝐵𝜏 

3 3±1.73 
1

3
𝑘𝐵 𝑙𝑛

1

2
[(

3 𝑢

ℏ 𝜔
)2 − (

1

2
)2] 

1

3
(𝑘𝐵𝜏 + √(

ℏ 𝜔

2
)

2

+ 𝑘𝐵
2𝜏2) 

ℏ 𝜔

2
 0 

2 

3
𝑘𝐵𝜏 

k k±k1/2 
𝑘𝐵

𝑘
∑ 𝑙𝑛 ((

𝑢

ℏ𝜔
−

1

2
+

𝑖

𝑘
)

𝑘

𝑖
)

𝑘−1

𝑖=1

 
Transcendental equation 

(not shown) 
ℏ 𝜔

2
 0 

𝑘 − 1 

𝑘
𝑘𝐵𝜏 

∞ ∞ 
𝑘𝐵(

𝑢

ℏ 𝜔
+

1

2
) 𝑙𝑛[

𝑢

ℏ 𝜔
+

1

2
] -𝑘𝐵(

𝑢

ℏ 𝜔
−

1

2
) 𝑙𝑛[

𝑢

ℏ 𝜔
−

1

2
] 

1

2
ℏ 𝜔 +

ℏ 𝜔

𝑒𝑥𝑝 (
ℏ 𝜔

𝑘𝐵𝑇
) − 1

 ℏ 𝜔

2
 0 𝑘𝐵𝑇 

 

Statistical fluctuation 
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The effective number of particles, Neff, can be modeled in any time by Neff = <N> + 

(√< 𝑁 >) ran = <N> (1 + 𝜉 𝑟𝑎𝑛) = <N> I, where 𝜉 = <N>-1/2 [12] is the relative amplitude order of 

the statistical fluctuations, I = N/<N> → 1 (for N → ∞) and -1 < ran < 1 is a number that follows a 

random sequence. The relative fluctuation of all properties varies as 𝜉 = <N>-1/2. In this work, it was 

considered only the average value of effective number of particles to describe those properties, 

i.e., N ≡ <N>. Neff as a function of N is shown in Table 1. 

 

3 Physical properties 

 3.1 Intensive properties 

 Since the systems of interest are finite, the extensivity of the thermodynamic potentials 

can be lost and as a result temperature and chemical potential are not true intensive functions as 

pointed out in the Introduction.   as a function of N is given by Eq.(4). The N dependence of  can 

be estimated using u = E/N = (M/N + 1/2)ℏω in Eq.(4) so that  𝜏 =
ℏ𝜔 

𝑘𝐵
(∑ (𝑀 + 𝑖)−1𝑁−1

𝑖=1 )
−1

.  Hence, 

varies weakly with N as ~ (ln(N))-1, i.e.,  can be considered nearly an intensive property. Another 

intensive property analogous to the chemical potential will be discussed below. 

 

3.2 Specific heat 

By employing the function u = u(τ) a simple differentiation leads to an expression for , i.e. 

a function analogous to the thermodynamic molar specific heat, namely u/ = For low values 

of N, it is still possible to visualize analytically the values of the functions s, u and . However, for N 

> 4 these values can be identified only by numerical techniques as Newton-Raphson which allows, 

inductively, for detecting general expressions, see Table 2. The molar specific heat becomes null 

when u becomes constant, i.e., u = 
ℏ 𝜔

2
. 

Table 2Specific heat ( and the analogous to the chemical potential for finite systems (m) for 

some values of N.

N Neff=N±N1/2  → 0 → ∞ m* 0 (m*=0)

2 2±1.41 
1

2
𝑘𝐵 0 

1

2
𝑘𝐵 

1

𝛽
 𝑙𝑛[𝛽ℏ𝜔] 

ℏ𝜔

𝑘𝐵



3 3±1.73 

1

3
𝑘𝐵{1 +

𝑘𝐵𝜏

√(
ℏ 𝜔

2
)

2

+ 𝑘𝐵
2𝜏2

} 
0 

2 

3
𝑘𝐵 −

1

𝛽
 𝑙𝑛 [

3𝑢𝑁=3

2ℏ𝜔
+

1

4
] 

2

3

ℏ𝜔

𝑘𝐵

 

k k±k1/2 
Transcendental equation 

(not shown) 
0 

𝑘 − 1 

𝑘
𝑘𝐵 −

1

𝛽
 𝑙𝑛 [

𝑘

𝑘 − 1

𝑢𝑁=𝑘

ℏ𝜔
+

𝑘 − 2

2(𝑘 − 1)
] (∑ 𝑖−1

𝑘−1

𝑖=1

)

−1

ℏ𝜔

𝑘𝐵

 

∞ ∞ 𝑘𝐵 (
ℏ 𝜔

𝑘𝐵𝑇
)

2 𝑒𝑥𝑝 (
ℏ 𝜔

𝑘𝐵𝑇
)

(𝑒𝑥𝑝 (
ℏ 𝜔

𝑘𝐵𝑇
) − 1)

2 0 𝑘𝐵 
1

𝛽
 𝑙𝑛 [1 − 𝑒𝑥𝑝 (

−ℏ 𝜔

𝑘𝐵𝑇
)] 0 
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The general behavior of versus the reduced temperature, 𝜃 (=
𝜏

𝜃𝐸
, with the Einstein 

temperature defined as 𝜃𝐸 ≡
ℏ𝜔

𝑘𝐵
), is shown in Fig. 2 for several N´s. Note that if the energy of the 

solid is distributed only between two oscillators one has =kB/2, i.e., in this particular case  would 

be independent of 𝜃There is an increasing availability of oscillators to receive energy quanta 𝜃) 
approaches to the thermodynamic behavior, 𝑁 → ∞ (red curve), where the specific heat assumes 
the smallest (low temperature) and the largest (high temperature) possible values, as shown in 
Table 2. It is worth mentioning here the similarity between the curves for N = 50 and 𝑁 → ∞, 
which suggests that the thermodynamic behavior can be sketchily exhibited already by small 
systems with a number of oscillators of a few tens.  

Interestingly enough, upon increasing N the set of 𝜃) curves show a first-order phase 
transition like behavior with a maximum (cf. red solid circles in Fig. 2) centered at 𝜃 ~ 0.40 as 
depicted in Fig. 2. Following detailed discussion presented in Ref. [4], for any “Einstein´s solid” 𝜃𝐸 

(the Einstein temperature) can be estimated roughly by taking the maximum of the plot  over 
temperature versus temperature. The present results indicate that for finite systems 𝜃𝐸 can be 
tuned upon varying N. For completeness, it is worth mentioning that for an ordinary non-
interacting bosonic system the condensation temperature strongly depends on the number of 
bosons [13]. 
 
 

 

Figure 2 – vs θ for finite values of N (= 2, 3, 5, 10, 20, 50 – black lines) and for N → ∞ (red line). 

The blue line indicates the specific heat of Dulong-Petit, while the red points indicate the specific 

heat jump and entropy become null and the energy reaches to the zero point energy for different 

N. 

 

As it will be discussed below in Section 3.3 Chemical Potential, the jump to zero in the 

specific heat for finite N is closely related to the change of the system zero-point energy.  
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3.3 Chemical Potential 

Essentially, the chemical potential gives the change of the free energy per particle when 

oscillators are added or removed from the system. In particular, the chemical potential is negative 

for an ensemble of harmonic oscillators and increases with decreasing of number of oscillators (N) 

as shown below. For a determined finite N the chemical potential becomes less negative as the 

temperature decreases and eventually reaches zero together with entropy at some critical value. 

An expression for the analogous thermodynamic chemical potential, m (=−𝜏
𝜕𝑆

𝜕𝑁
), can be 

formulated by taking the derivative of S with respect to N (and by using the Leibniz integral rule 

[14] for discrete systems, see details in the Appendix B): 

𝜕𝑆

𝜕𝑁
= 𝑘𝐵 𝑙𝑛 [(

𝐸

ℏ𝜔
+

𝑁

2
− 1)

1

𝑁−1
] −

𝑘𝐵

2
∑ (

𝐸

ℏ𝜔
−

𝑁

2
+ 𝑖)

−1
𝑁−1
𝑖=1 = −

𝑚

𝜏
. (5) 

 

By considering   𝛽 =
1

𝑘𝐵 𝜏
 and, from Eq. (4), ∑ (

𝐸

ℏ𝜔
−

𝑁

2
+ i)

−1
𝑁−1
𝑖=1 =

ℏ 𝜔

𝑘𝐵 𝜏
, the Eq. (5) can be 

rewritten for any N as 

𝐸

ℏ𝜔
= (𝑁 − 1)𝑒

−𝛽(𝑚 − 
ℏ 𝜔

2
)

−
𝑁

2
+ 1, (6) 

 

which for 𝑁 → ∞ reduces to: 

𝑢

ℏ𝜔
= 𝑒

−𝛽(𝑚 − 
ℏ 𝜔

2
)

−
1

2
 .     (7) 

 

The Eq. (6) can also be written explicitly for m as a function of E and N as: 

𝑚 =
ℏ𝜔

2
−

1

𝛽
 𝑙𝑛 [

(
𝐸

ℏ𝜔
+

𝑁

2
−1)

𝑁−1
], 

 

(8) 

with 𝑚 ( → ∞) =  −
1

𝛽
 𝑙𝑛 [

k𝐵𝜏

ℏ𝜔
] for any N. 

The chemical potential is equal to the quantum vacuum zero point energy for →0, i.e., 

𝑚(𝜏 → 0) =
ℏ𝜔

2
 or 𝑚∗(𝜏 → 0) = (𝑚 −

ℏ𝜔

2
) = 0. In order to prove the latter statement, the 

following analysis is made:  

 

𝛽𝑚∗ = 𝛽 (𝑚 −
ℏ𝜔

2
) = − 𝑙𝑛 [

𝑁

𝑁−1

u𝑁

ℏ𝜔
+

𝑁−2

2(𝑁−1)
],                                      (9) 

note that  m* is always negative. 
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If 𝑢𝑁→∞ =  
1

2
ℏ 𝜔 +

ℏ 𝜔

exp(
ℏ 𝜔

k𝐵𝑇
)−1

 then 𝑚∗ =
1

𝛽
 𝑙𝑛 [1 − exp (

−ℏ 𝜔

𝑘𝐵𝑇
)] [15] as shown in Table 2. 

The intensivity of m* (or m*) can be analyzed by considering Eq.(9).  The m* quantity is 

virtually an intensive property since it varies as a logarithmic function of simple relations of N. 

Using u = (M/N+1/2)ℏω in Eq.(9) one obtains  𝛽𝑚∗ = − 𝑙𝑛 [
𝑁+𝑀−1

𝑁−1
].  Alternatively, if u →

∞= 
𝑁−1 

𝑁
𝑘𝐵𝜏 in Eq.(9) one has  𝛽𝑚∗ = − 𝑙𝑛 [

𝑘𝐵 𝜏

ℏ 𝜔
+

𝑁−2

2(𝑁−1)
], which varies as 𝛽𝑚∗ ~ 𝑙𝑛[𝑙𝑛 (𝑁)], i.e., 

𝛽𝑚∗varies very slightly with N. 

Note that m* becomes null when 𝑢𝑁 =
ℏ𝜔

2
 (zero point energy) for any N at temperature 0. 

Such a behavior is analogous to the Bose-Einstein condensate temperature [16], i.e., below a 

certain temperature the chemical potential vanishes. Thus, considering the analogy with an 

ordinary Bose-Einstein condensation  𝜏0  can be estimated as  
ℏ 𝜔

2 𝑘𝐵
 by considering one of the four 

following equivalent situations: 

a) dB (thermal de Broglie wavelength) ~ < x > (average inter-particle distance), where dB = 

h/p = h/(2m<E>)1/2 = h/(2m𝑘𝐵𝜏0)1/2 and  < V > = k< x >2/2 = 
ℏ𝜔

2
 (lowest energy); 

 

b) xp ~ h/2, with E = K + V, where <K> = <p>2/2m, <V> = k<x>2/2, k = m(/2)2, and 

<V>/<K> = 1 for the harmonic oscillator virial relation; 

 

c)  E t~ h/2, with E ~ 𝑘𝐵𝜏0 (thermal energy) and t~ 2/; 

 

d) the classical curve, u = kB , touches the zero point energy, 𝑢 =
ℏ𝜔

2
 (see Fig.1) at 𝜏0= 

ℏ 𝜔

2 𝑘𝐵
. 

From Eq. (9), if 𝑢𝑁 = (
ℏ𝜔

2
+ 𝛿) then (

𝑁

𝑁−1

u𝑁

ℏ𝜔
+

𝑁−2

2(𝑁−1)
) = (1 +

𝑁

𝑁−1

𝛿

ℏ𝜔
) ≡ .  If 𝛿 ≥ 0 (for 

N > 1) then  ≥ 1 and − 𝑙𝑛[ ] = 𝛽𝑚∗ ≤ 0. Since the zero point energy is the lowest value, then 

𝛿 < 0 is not allowed and consequently 𝛽𝑚∗ cannot be positive. 

Using 𝑢𝑁 =
ℏ𝜔

2
 in Eq. (4), it turns out that: 

𝜏0 =  (∑ 𝑖−1𝑁−1
𝑖=1 )

−1 ℏ𝜔

𝑘𝐵
 ,                           (10) 

where  ∑ 𝑖−1𝑁−1
𝑖=1  is the harmonic series, which diverges as ln(N) for 𝑁 → ∞ and in this limit 

𝑇0  → 0.  𝜏0  can also be given in terms of 𝜃 ≡
𝜏𝑘𝐵

ℏ𝜔
, as follows: 

𝜃0 = (∑ 𝑖−1𝑁−1
𝑖=1 )

−1
.                    (11) 

Note that 0 (or 𝜃0) can also be obtained by using uN(0) = 
ℏ𝜔

2
 in Eq(4) as shown below: 
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1

𝜃0
=

ℏ𝜔

𝑘𝐵𝜏0
=

1

𝑁
∑ (

ℏ𝜔

2

ℏ𝜔
−

1

2
+

i

𝑁
)

−1

𝑁−1
𝑖=1 = ∑ 𝑖−1𝑁−1

𝑖=1 . 

The strictly negative behavior of the m* function against the reduced temperature (𝜃) 

for finite systems (N = 2, 4, 10, and 50) is depicted in Fig. 3. For comparison, the thermodynamic 

limit (dashed curve) is also shown. It can be noted that in the frame of the approach considered 

here systems consisting of a few tens of particles (oscillators) are already in the thermodynamic 

regime at high temperatures, i.e., 𝜃 ≫  𝜃0. 

 

 

Figure 3 – Normalized chemical potential (cf. Eq. (9)) as a function of θ for distinct number 

of oscillators N, N = 2 (black), 3 (red), 10 (blue), 50 (green), and 𝑁 → ∞ (dashed black line). 

 In our analysis, the assumption of 𝜏0 as the Bose-Einstein condensate temperature is 

based on the following argument: when the chemical potential and entropy goes to zero at finite 

temperature the system spontaneously condensate upon decreasing temperature. It is well-

known from classical textbooks that such a boson condensation cannot take place in fermions and 

classical particles, since for positive chemical potential (at low temperatures) a repulsive behavior 

appears once the system temperature is decreased. The aforementioned repulsion is related to 

the Pauli Exclusion Principle for fermions and to rigid barrier for classical particles, which prevents 

the condensation.  

 As can be inferred from Eq. (11), and directly seen in Fig. 4 (a), 𝜃0  slowly decreases as a 

function of N proportionally to the inverse of the harmonic series. In terms of comparison, 

𝜃0(N=10) = 0.3535 and 𝜃0(N = 1012) = 0.0355, i.e., the reduced Bose-Einstein condensate 

temperature shows a slight variation with N and it can still be relatively high for mesoscopic 

systems, i.e. , 𝜃0 ≈  (ln(𝑁))−1 . The approximation (∑ 𝑖−1𝑁
𝑖=𝑀 )

−1
≈  (ln(𝑁) − ln(𝑀))−1 was 

considered for large values (>106) of N and M. 
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(a) 

 

(b)

 
Figure 4 – (a) The critical temperature, 𝜃0, as a function of ln(N)  (cf. Eq. (11)); (b) The 

analogous specific heat, , evaluated at the analogous Bose-Einstein condensate temperature, θ, 

as a function of ln(N). Solid lines are guide for the eyes. For details, see the main text. 

 

The reduced critical temperature (𝜃0) is shown in Fig. 4 (a), where one can see the slow 

decreasing of 𝜃0 as a function of N (note the logarithm scale for N). The specific heat for the 

analogous to the Bose-Einstein condensate temperature for solids with different numbers of 

oscillators is shown in Fig. 4 (b). Similarly, it is possible to observe the slow convergence for null 

specific heat for increasing N. 

For an ensemble of harmonic oscillators the critical temperature is null (𝜃0 → 0) for the 

thermodynamic limit (𝑁 → ∞). However, 𝜃0 is finite for instance in the case of a boson gas 

trapped in a box. For the latter the eigen-values of the particles are Ei = h2 ni
2/(8 m L2), where L is 

the box length, being the zero point energy given by Ezp = h2/(8 m L2). Ei around the critical 

temperature can be approximated by Ei = Ezp + , with  << 1. Consequently, the energy quanta 

function F(E) ≈ N/2 + 4mL2E/h2 or f(u) ≈ ½ + 4mL2u/h2 since 𝑀 = ∑ 𝑛𝑖
𝑁
𝑖=1 =  ∑ (

8𝑚𝐿2𝐸𝑖

ℎ2 )
1/2

𝑁
𝑖=1 . 

Finally, one can obtain 𝜃0 ≈
1

2
(∑ (𝑖 + 𝑁)−1𝑁−1

𝑖=1 )
−1

around the critical temperature, where 

𝜃 ≡
8𝑚𝐿2𝜏k𝐵

ℎ2 . The critical temperature for 𝑁 → ∞ is 𝜃0 ≈
2

𝑙𝑛2
 = 2.89, i.e., it is no null.  

 

3.4 Finite size phase transition 

Before starting to discuss the details of the quantities of interest in connection with a 

phase transition like behavior, we stress that first-order transitions have been intensively explored 

in the literature for finite size systems, see e.g. [17]. 

The uN() and m*() show an equivalent finite size first-order transition like behavior 

at0, i.e., the first derivative duN/d and dm*/d are discontinuous. For example, uN=2= 
1

2
𝑘𝐵 𝜏 for 

>0 and uN(0) =  
ℏ𝜔

2
 for≤0, i.e., duN=2/d 

1

2
𝑘𝐵  for >0 and duN/d for ≤0. Such 

discontinuous behavior of the first derivative appears for all N´s. Note that the energy (u) is 
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described by a smoothed curve as a function of T only in the thermodynamic limit for classical and 
quantum models, cf. Fig.1. Hence, as well-known from textbooks, the Einstein solid model does 
not exhibit phase transition in the thermodynamic limit. However, such a behavior is not observed 
for finite systems. Instead, the energy (u) for finite systems is not a smoothed curve and 

consequently its first derivative, namely duN/d is discontinuous. The heat capacity (duN/d), 

i.e. the first derivative of uN(), shows for all N a discontinuity in =0 as shown in Fig.2. These 

jumps appear at =0, where the uN() curves are not smoothed.  
 

Yet, m* shows similar first-order transition like behavior. m* is given by Eq.(9) (Fig.3) for 

>0 and m*=0 for ≤0, which implies in dm*/d≈ for large  and dm*/d for 

≤0. That is, the derivative dm*/d shows a discontinuity as shown in Fig.5. The dm*/dis 

given by: 

𝑑𝛽𝑚∗

𝑑𝜏
= − 



u𝑁 +
𝑁−2

𝑁

ℏ𝜔

2

 

with for → ∞𝜃 → ∞)

𝑑𝛽𝑚∗

𝑑𝜃
≈ − 

1

𝜃 +
𝑁−2

2(𝑁−1)

≈ −𝜃−1  

Note that, the dm*/dis proportional to . In particular, this derivative shows simple behavior 

for large . 

 

 

 

Figure 5 – Derivative of m* function with respect to the reduced temperature θ for 

distinct number of particles N, N = 2 (black), 3 (red), 10 (blue), 50 (green), and 𝑁 → ∞ (dashed 

black line) 

 



12 
 

4 Conclusions 

An extended form of the Einstein model for specific heat in solids was proposed taking 

into account the number of harmonic oscillators (N). The system entropy was strictly deduced for 

arbitrary N, enabling the formulation of thermodynamic analogous functions describing the 

physical properties of finite systems, such as chemical potential and specific heat. The analogous 

chemical potential, m, was obtained using a discrete form of the Leibniz integral rule while the 

analogous specific heat, χ, by simple differentiation technique.  

The critical temperature, where both entropy and chemical potential become null, was 

obtained and identified as the temperature associated with a Bose-Einstein condensate (𝜃0). The 

internal energy and the chemical potential are non-smoothed functions at 𝜃0, consequently the 

first derivative of those energies are discontinuous at 𝜃0, i.e., a first-order transition like behavior 

was found. The discontinuities of () and m*() derivatives (or non-smoothed behavior of u() 

and  m*()) appear exclusively for finite number of non-interacting harmonic oscillators (finite 

size Einstein’s solid model) and vanish in the thermodynamic limit. Usually, discontinuities appear 

only in the thermodynamic limit of a Bose gas, which rigorously disappear for finite systems, e.g., 

the effect of a finite number of particles in the Bose-Einstein condensation of a trapped gas [13]. 

For finite size Einstein solids (nano-clusters) the critical temperature is always non-null and 

its reduced form, 
𝜏0𝑘𝐵

ℏ𝜔
= 𝜃0, has an inverse of harmonic series dependence on N. The values of 

in the limit of low-temperatures vary strongly for small values of N, but are always above the 

thermodynamic limit in agreement with experimental results [10]. Our analysis suggests that the 

simple hypothesis of assuming the distribution of the total internal energy among the oscillators 

suffices to describe the behavior of nano-systems [10-12]. As a possible direct application of the 

model proposed here we refer to the specific heat of carbon nanotubes.  
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Appendix A – Simplifying ln Ω 

By applying the logarithm function to both sides of the equation for number of accessible 

eigen-states (Ω) for generic M = F(E) = N f(u) and u=E/N is 

Ω (E,N) = 
(𝐹(𝐸)+𝑁−1)!

(𝐹(𝐸))!(𝑁−1)!
 , (A1) 

one can write: 

ln(Ω(E,N)) = 𝑙𝑛(𝐹(𝐸) + 𝑁 − 1)! − 𝑙𝑛(𝐹(𝐸))! − 𝑙𝑛(𝑁 − 1)! (A2) 
or, equivalently:   

ln(Ω(E,N)) = ∑ 𝑙𝑛 (𝑖)𝐹(𝐸)+𝑁−1
𝑖=1 − ∑ 𝑙𝑛 (𝑗)

𝐹(𝐸)
𝑗=1 − ∑ 𝑙𝑛 (𝑘)𝑁−1

𝑘=1 . (A3) 

  
The first two terms on the right side of eq.(A3) can be reduced to one by subtracting the common 

terms: 

ln(Ω(E,N)) = ∑ 𝑙𝑛 (𝑖)𝐹(𝐸)+𝑁−1
𝑖=𝐹(𝐸)+1 − ∑ 𝑙𝑛 (𝑘)𝑁−1

𝑘=1 . (A4) 

 

Finally, by recognizing that the two sums on the right of eq. (A4) have the same number of terms, 

this equation can be rewritten in the following simplified form: 

ln(Ω(E,N)) = ∑ 𝑙𝑛𝑁−1
𝑘=1 (

𝐹(𝐸)+𝑘

𝑘
), 

(A5) 
 

where the number of terms in the sum is energy independent. This is particularly appropriate for 

the calculations since E is the unknown for given N and τ. Thus the eq. (A1) can be rewritten as: 

Ω (E,N) = ∏ (
𝐹(𝐸)

𝑘
+ 1)𝑁−1

𝑘=1 . (A6) 

 

 The entropy is given by: 

s=S/N=
𝑘𝐵

𝑁
 ln(Ω(E,N)) = 

𝑘𝐵

𝑁
∑ 𝑙𝑛𝑁−1

𝑘=1 (
𝐹(𝐸)+𝑘

𝑘
) =  

𝑘𝐵

𝑁
∑ 𝑙𝑛𝑁−1

𝑘=1 (
𝑓(𝑢)+𝑘/𝑁

𝑘/𝑁
). (A7) 

 

and the temperature () is obtained from s/u = S/E = 1/ and that is: 

1

𝜏
= 𝑘𝐵[ 𝐹(𝐸)/𝐸] ∑ (𝐹(𝐸) + 𝑘)−1𝑁−1

𝑘=1 =
𝑘𝐵

𝑁
[ 𝑓(𝑢)/𝑢] ∑ (𝑓(𝑢) +

𝑘

𝑁
)

−1
𝑁−1
𝑘=1 .       (A8) 

 

Considering 𝑁 → ∞ and using the Stirling approximation in Eq (A7) and s/u = S/E = 

1/T one can obtain the energy Planck distribution for generic f(u) with  = 1/(kBT): 

𝑓(𝑢) =  
1

𝑒𝑥𝑝 (
𝛽

𝑓(𝑢)/𝑢
) − 1

 . 
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Appendix B–Discrete form of Leibniz integral rule 

 

When the limits of an integral are not constant, it must be treated according to the Leibniz 

integral rule, which says that, given a function 𝜑(𝑘, 𝑁) defined in an integral form: 

𝜑(𝑘, 𝑁) =  ∫ 𝑓(𝑘, 𝑁) 𝑑𝑘
𝑏(𝑁)

𝑎(𝑁)
, 

the derivative of 𝜑(𝑘, 𝑁) with respect to 𝑁 is given by: 

𝑑 𝜑(𝑘,𝑁)

𝑑𝑁
=  ∫

𝑓(𝑘,𝑁)

𝑁
 𝑑𝑘

𝑏(𝑁)

𝑎(𝑁)
+

𝑑𝑏(𝑁) 

𝑑𝑁
𝑓(𝑏(𝑁), 𝑁) −

𝑑𝑎(𝑁) 

𝑑𝑁
𝑓(𝑎(𝑁), 𝑁). (B.1) 

 

If 𝜑(𝑘, 𝑁) is a discrete function of k one has: 

𝜑(𝑘, 𝑁) =  ∑ 𝑓(𝑘, 𝑁)
𝑏(𝑁)
𝑘=𝑎(𝑁) . 

Rearranging ∆𝜑(𝑘, 𝑁) = 𝜑(𝑘, 𝑁 + ∆𝑁) − 𝜑(𝑘, 𝑁) one obtains: 

∆𝜑(𝑘, 𝑁) = ∑ [𝑓(𝑘, 𝑁 + ∆𝑁) −  𝑓(𝑘, 𝑁)]𝑏(𝑁)
𝑘=𝑎(𝑁)  + ∑ 𝑓(𝑘, 𝑁 + ∆𝑁) + 

𝑏(𝑁)+∆𝑏(𝑁)
𝑘=𝑏(𝑁) ∑ 𝑓(𝑘, 𝑁 + ∆𝑁)

𝑎(𝑁)
𝑘=𝑎(𝑁)+∆𝑎(𝑁) . 

Finally, the discrete Leibniz sum rule is given by: 

∆𝜑(𝑘,𝑁)

∆𝑁
= ∑

[𝑓(𝑘,𝑁+∆𝑁)− 𝑓(𝑘,𝑁)] 

∆𝑁

𝑏(𝑁)
𝑘=𝑎(𝑁) +

∆𝑏(𝑁) 

∆𝑁
 𝑓(𝜉𝑏 , 𝑁 + ∆𝑁) −

∆𝑎(𝑁)

∆𝑁
 𝑓(𝜉𝑎 , 𝑁 + ∆𝑁),        (B.2) 

where 𝑎(𝑁) ≤ 𝜉𝑎 ≤ 𝑎(𝑁 + ∆𝑁) and 𝑏(𝑁) ≤ 𝜉𝑏 ≤ 𝑏(𝑁 + ∆𝑁). 

The discrete derivative in the limit ∆𝑁 → 0 becomes: 

𝑑𝜑(𝑘,𝑁)

𝑑𝑁
= ∑

𝑑𝑓(𝑘,𝑁)

𝑑𝑁

𝑏(𝑁)
𝑘=𝑎(𝑁) + 

𝑑𝑏 

𝑑𝑁
𝑓(𝑏(𝑁), 𝑁) −

𝑑𝑎

𝑑𝑁
 𝑓(𝑎(𝑁), 𝑁).                                                  

(B.3) 

with a(N) = 1, b(N) = (N - 1), which appear in Eq.(5) as the limits of sum. Hence, the final derivative 

considered was: 

                            
∆𝜑(𝑘,𝑁)

∆𝑁
≈ ∑

𝑑𝑓(𝑘,𝑁)

𝑑𝑁
𝑁−1
𝑘=1 +  𝑓(𝑁 − 1, 𝑁).                                                                   (B.4) 


