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Introduction

The origin of the group determinant begins with Richard Dedekind in the late 1800’s.

He made several observations about the group determinant, but his success in proving these

observations was limited to the case of finite Abelian groups. He shared his results with

Ferdinand Georg Frobenius, who quickly became greatly interested in the topic. In fact, it

was Frobenius who went on to prove many results in the case of general finite groups. The

purpose of this thesis is to prove Dedekind’s remarkable theorem that the group determinant

of a finite Abelian group with order n is a polynomial of n variables, which can be factored

into a product of linear polynomials with characters as coefficients.

In the first chapter, we will introduce some properties of characters that will be used to

prove Dedekind’s theorem. While the term ”character” was first introduced in 1801 by Gauss

in his Disquisitiones Arithmeticae, it wasn’t until the late nineteenth century that Frobenius

developed the foundations of character theory. Frobenius is credited as the creator of group

character theory by Thomas Hawkins, who has studied the original correspondence that

took place between Dedekind and Frobenius [5]. Perhaps most recognized as fundamental to

representation theory, characters are much less known for the thing which drove Frobenius

to study them in the first place- their role in the factorization of the group determinant.

The second chapter will focus on the group determinant and will contain two proofs of

Dedekind’s theorem, which is introduced here.

Definition. To construct the group matrix for an arbitrary group G, first assign an index

to each element of G in any order (choosing the identity of G as the first element will be

done here for convenience): G = {g1, g2, g3, ..., gn}. Create the group matrix, MG = (xij), so

that the entries are formal variables given by {xij = xk : gig
−1
j = gk}.

For example, take the group Z3 = {[0], [1], [2]}. Assign the gi so that [0]→ g1, [1]→ g2,

and [2]→ g3. For the xij in the second row and first column, we have i = 2 and j = 1. Since
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g2g
−1
1 = g2, this entry is x2. The group matrix in this case will be


x1 x3 x2

x2 x1 x3

x3 x2 x1 .


Notice that the main diagonal consists of only the variable associated with the identity

element. Frobenius speculated that this feature was Dedekind’s motivation for using the

ij = gig
−1
j construction, instead of the more natural ij = gigj [6]. Although his results

could have been obtained from either construction, the calculations are made simpler by the

ij = gig
−1
j construction.

Definition. The group determinant, θ(x1, x2, . . . , xn), is a polynomial of n independent

variables.

Dedekind’s theorem states that, for finite Abelian groups, θ factors into the product of

linear polynomials.

Take our example Z3. The determinant of the group matrix given by traditional calcu-

lation in this case is

x31 + x32 + x33 − 3x1x2x3

= (x1 + x2 + x3)(x
2
1 + x22 + x23 − x1x2 − x1x3 − x2x3). (1)

Dedekind’s factorization calls for third roots of unity, as we will see in chapter two. For the

roots of unity, let ω = −1+i
√
3

2
, ω2 = −1−i

√
3

2
, and ω3 = 1. The factorization suggested by

Dedekind is

(x1 + x2 + x3)(x1 + ωx2 + ω2x3)(x1 + ω2x2 + ωx3). (2)

To see that this is equal to the determinant of Z3, first, we can disregard the factor obviously
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shared by (1) and (2). Then,

(x1 + wx2 + w2x3)(x1 + w2x2 + wx3)

= x21 + w2x1x2 + wx1x3 + wx1x2 + x22 + w2x2x3 + w2x1x3 + wx2x2x3 + x23

= x21 + x22 + x23 + (x1x2 + x1x3 + x2x3)(w + w2)

= x21 + x22 + x23 + (x1x2 + x1x3 + x2x3)(
−1+i

√
3

2
+ −1−i

√
3

2
)

= x21 + x22 + x23 + (x1x2 + x1x3 + x2x3)(−1)

= x21 + x22 + x23 − x1x2 − x1x3 − x2x3 .

So Dedekind’s theorem is verified for this example.
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Chapter 1

Characters

Definition. Given a finite group G, a character on G is a mapping χ, from G to T, such

that χ(gh) = χ(g)χ(h) for all g, h,∈ G.

Lemma 1.1. Given a finite group G with identity e, χ(e) = 1 for all characters on G.

Proof. By the properties of characters, χ(e) = χ(ee) = χ(e)χ(e). The only solution to this

equation in T is χ(e) = 1.

Lemma 1.2. χ is a mapping to the group of nth roots of unity.

Proof. For any finite group G with order n, gn = e for all g in G. So, χ(g)n = χ(gn) =

χ(e) = 1. This implies that χ(g) is an nth root of unity.

Lemma 1.3. For a cyclic group G with order n, there are exactly n characters on G.

Proof. Let G be a cyclic group generated by a, so that G = {a0 = e = an, a1, a2, . . . , an−1},

and let ω be a nth root of unity, so that µn = {ω0 = 1 = ωn, ω1, ω2, . . . , ωn−1}. Define

χk(a) := ωk for k = 0, 1, 2, . . . , n − 1. This gives n characters on G. To see that there are

no more than n characters, suppose there is a χj for which j ≥ n. Then, j = k + cn, for

some c ∈ N. Such a χj will map a to ωk+cn, but we see that ωk+cn = ωkωcn = ωk. Thus, χj

is equivalent to χk.

Lemma 1.4. The characters of a group G, with the operation multiplication defined by

χiχj(g) = χi(g)χj(g) for all g ∈ G, form a group, Ĝ, called the dual group of G.

Proof. Let G be a finite group with order n, and Ĝ = {χ0, χ1, . . . , χk}. Because the product

of nth roots of unity is again an nth root of unity, Ĝ is closed. For associativity, we have
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χi(χjχk)(g) = χi(g)(χjχk)(g) = χi(g)χj(g)χk(g) = (χiχj)(g)χk(g) = (χiχj)χk(g). The

identity in Ĝ is the trivial mapping χ0(g) = 1. The inverse elements χ(g)−1 satisfy the

definition of a character since χ(gh)−1 = χ(h−1g−1) = χ(h−1)χ(g−1) = χ(g)−1χ(h)−1. Thus,

they are in Ĝ.

Theorem 1.5. The number of characters for a finite Abelian group G is equal to the order

of G.

The proof of this theorem follows the reasoning given in [7]. We will use the following

lemma:

Lemma 1.6. For cyclic groups G and H, there are |Ĝ| · |Ĥ| distinct characters of G×H.

Proof. For cyclic groups G, with character χg, and H, with character χh, we obtain a char-

acter χk of G×H by χk(g, h) = χg(g)χh(h), where g ∈ G and h ∈ H. To show that this is

a homomorphism we have:

χk[(g1, h1)(g2, h2)] = χk(g1g2, h1h2)

= χg(g1g2)χh(h1h2)

= χg(g1)χg(g2)χh(h1)χh(h2)

= χg(g1)χh(h1)χg(g2)χh(h2) = χk(g1, h1)χk(g2, h2).

To show that the characters are distinct, take characters χj and χk of G×H. If χj = χwχx

and χk = χyχz for non-identical pairs (χw, χx) and (χy, χz), then χj 6= χk because either

χw 6= χy, in which case there is a g ∈ G such that χw(g) 6= χy(g), which implies χj(g, e) 6=

χk(g, e), or, χx 6= χz, in which case there is an h ∈ H such that χx(h) 6= χz(h), which implies

χj(e, h) 6= χk(e, h). Thus, G×H has |Ĝ| · |Ĥ| characters.

Proof. (Theorem 1.5) Now, to prove that theorem 1.5 is true, it is only required to note that

any finite Abelian group G can be written as the product of cyclic groups with prime power
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order: G = Zk1 × Zk2 × · · · × Zkn , where k1k2 · · · kn = |G|. Therefore, Abelian G has |G|

characters.

Definition. For all characters χi and χj of a dual group Ĝ, define an inner product by

〈χi, χj〉 =
1

|G|
∑
g∈G

χi(g)χj(g) . (1.1)

Theorem 1.7. In the vector space of all functions f : G → C, the characters of G are

orthonormal with respect to the inner product given by (1.1).

This proof follows the presentation in [1].

Proof. Given an inner product 〈χi, χj〉 which satisfies the Kronecker delta:

δij =


0 if i 6= j

1 if i = j ,

the vectors χi and χj are orthonormal. To see that 〈χi, χj〉 satisfies δij, first, suppose i = j.

Then,

〈χi, χj〉 = 〈χi, χi〉 =
1

|G|
∑
g∈G

χi(g)χi(g) =
1

|G|
∑
g∈G

1 = 1 .

Next, suppose i 6= j. Choose an h ∈ G such that χi(h) 6= χj(h). Then,

〈χi, χj〉 =
1

|G|
∑
g∈G

χi(g)χj(g)

=
1

|G|
∑
g∈G

χi(hh
−1g)χj(hh−1g)

= χi(h)χj(h)
1

|G|
∑
g∈G

χi(h
−1g)χj(h−1g)

= χi(h)χj(h)〈χi, χj〉 .

Because χi(h) 6= χj(h), h cannot be equal to the identity, and χj(h) cannot be the complex
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conjugate of χi(h). Thus, χi(h)χj(h) cannot be equal to 1. It also cannot be zero, because

characters do not give zero values. Thus, 〈χi, χj〉 must be equal to zero.

Lemma 1.8. Characters of G form a linearly independent vector set, {χk(g) : χk ∈ Ĝ}.

Proof. By the properties of the inner product (1.1), ai〈χi, χi〉 = 0 implies ai = 0. Let

|Ĝ| > n. Assume
n∑
i=1

aiχi = 0, where ai ∈ C. Given an inner product of characters in Ĝ,

〈0, χj〉 = 0. This implies that 〈
n∑
i=1

aiχi, χj〉 = 0 for all χj ∈ Ĝ. Then,
n∑
i=1

ai〈χi, χj〉 = 0. That

is, a1〈χ1, χj〉 + a2〈χ2, χj〉 + · · · + an〈χn, χj〉 = 0. By induction, when j = n + 1, we have
n∑
i=1

ai〈χi, χj〉 + aj〈χj, χj〉 = 0. This implies, aj〈χj, χj〉 = 0. Since 〈χj, χj〉 = 1, it must be

that aj = 0. Thus, the characters of G are linearly independent.
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Chapter 2

Factoring the Group Determinant

Finite Abelian Groups

Thereom (Dedekind). For finite Abelian groups, θ is the product of linear polynomials,

θ =
∏
χ∈Ĝ

[
n∑
i=1

χ(gi)xi

]
. (2.1)

Proof. For the general case of any finite Abelian group G, it must be established that θ 6= 0.

This is true because the term xn1 , given by the main diagonal, will occur in θ. Since the

coefficient on this term is not zero, the polynomial cannot be zero.

Next, following a proof presented by K. Conrad in [2], we will show that for each χ ∈ Ĝ,
n∑
i=1

χ(gi)xi is a factor of θ. For a fixed χ, multiply each row by χ(gi) and add it to the

row indexed by e = x1. Then, in column gh, row e, you will have (remembering for xih,

ih = gig
−1
h )

χ(g1)x1h + χ(g2)x2h + ...+ χ(gn)xnh

=
n∑
i=1

χ(gi)xih

= χ(ghg
−1
h )

n∑
i=1

χ(gi)xih

= χ(gh)
n∑
i=1

χ(gig
−1
h )xih

= χ(gh)
n∑
i=1

χ(gi)xi .
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Thus, each entry in row e has a common factor of
n∑
i=1

χ(gi)xi, so this is a factor of θ. Since

there are n distinct characters in G, and characters are not scalar multiples of each other,

this gives rise to n relatively prime linear polynomials in n variables. Because xn1 is in θ, it

is clear there is no coefficient missing. This completes the factorization of θ.

Definition. C[G] is the group algebra of G over the complex field and consists of all elements

of the form a1g1 + a2g2 + ... + angn where gi ∈ G, and each ai ∈ C is the coefficient

corresponding to gi. Any such element can be denoted
n∑
i=1

aigi.

A second proof presented by Conrad compares a matrix representation of a linear map

in two bases for C[G].

Proof. The first basis for C[G] is G = {g1, g2, ..., gn}. The second basis is {
n∑
i=1

χ(gi)gi},

χ ∈ Ĝ, where χ is a character and Ĝ is the dual group of G. This forms a basis for C[G]

because the characters of G are linearly independent.

Consider the matrix of the linear map M multiplied by
∑
aigi in the basis {g1, g2, ..., gn},

defining aij−1 := ak such that gig
−1
j = gk:

Mgj :=
(∑

aigi

)
gj =

[∑
aij−1(gig

−1
j )
]
gj =

∑
aij−1gi(g

−1
j gj) =

∑
aij−1gi .

So the matrix of M in this basis is (aij−1).
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Next, consider the same linear mapping in the basis {
∑
χ(gi)gi}:(

n∑
i=1

aigi

)(
n∑
j=1

χ(gj)gj

)
=

n∑
i=1

(
n∑
j=1

aiχ(gj)gigj

)

=
n∑
k=1

 ∑
gigj=gk

aiχ(gj)gk


=

n∑
k=1

 ∑
gigj=gk

aiχ(g−1i gigj)

 gk

=
n∑
k=1

(
n∑
i=1

aiχ(g−1i )χ(gk)

)
gk

=

(
n∑
i=1

aiχ(g−1i )

)(
n∑
k=1

χ(gk)gk

)
.

In summary,

(
n∑
i=1

aigi

)(
n∑
j=1

χ(gj)gj

)
=

(
n∑
i=1

aiχ(g−1i )

)(
n∑
k=1

χ(gk)gk

)
. (2.2)

Recall the equation

MX = λX (2.3)

giving eigenvalues, λ, and associated eigenvectors, X, for a linear map, M . Comparing (2.2)

to (2.3), we see that multiplication on
∑
χ(gj)gj by

∑
aigi gives the associated eigenvalue

λ =
∑
aiχ(g−1i ). In other words, the second basis we chose for C[G] consists of eigenvectors

for left multiplication by
∑
aigi. Again, because G is Abelian, there are n characters in Ĝ,

giving n distinct eigenvectors and n distinct eigenvalues. Since the determinant of a matrix

is equal to the product of its eigenvalues and an n×n matrix can have at most n eigenvalues,

we have

det(M) =
∏
χ∈Ĝ

(
n∑
i=1

aiχ(g−1i )

)
=
∏
χ∈Ĝ

(
n∑
i=1

aiχ(gi)
−1

)
=
∏
χ∈Ĝ

(
n∑
i=1

aiχ(gi)

)
.
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Thus,

det(M) = det(aij−1) =
∏
χ∈Ĝ

(
n∑
i=1

aiχ(gi)

)
.

This is true for any ai, therefore we can replace the ai by formal variables xi. That is, the

polynomial p(x1, x2, . . . , xn), evaluated for xi = ai, is exactly p(a1, a2, . . . , an). This implies

that det(aij−1) = det(xij−1), or rather, in the notation of the group determinant, det(xij).

Because the polynomials are equivalent, we have the conclusion

θ(x1, x2, . . . , xn) =
∏
χ∈Ĝ

(
n∑
i=1

χ(gi)xi

)
.

To demonstrate this for Z3, we start with the bases Z3 = {g1, g2, g3} as previously defined,

and

{∑
χ(gi)gi

}
= {χ1(g1)g1 + χ1(g2)g2 + χ1(g3)g3, χ2(g1)g1 + χ2(g2)g2 + χ2(g3)g3,

χ3(g1)g1 + χ3(g2)g2 + χ3(g3)g3}

= {g1 + g2 + g3, g1 + ωg2 + ω2g3, g1 + ω2g2 + ωg3}.

Now, multiply the basis Z3 by
∑
aigi:(

n∑
i=1

aigi

)
{g1, g2, g3}

= {a1g1g1 + a2g2g1 + a3g3g1, a1g1g2 + a2g2g2 + a3g3g2, a1g1g3 + a2g2g3 + a3g3g3}

= {a1g1 + a2g2 + a3g3, a3g1 + a1g2 + a2g3, a2g1 + a3g2 + a1g3}.
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So the matrix of M in the basis {g1, g2, g3} is given by

(aij−1) =


a1 a3 a2

a2 a1 a3

a3 a2 a1 ,


which we know from previous calculation has determinant

(a1 + a2 + a3)(a1 + ωa2 + ω2a3)(a1 + ω2a2 + ωa3).

Applying the multiplication to the second base, we have

(
n∑
i=1

aigi

)
{g1 + g2 + g3, g1 + ωg2 + ω2g3, g1 + ω2g2 + ωg3}

= (a1g1 + a2g2 + a3g3){g1 + g2 + g3, g1 + ωg2 + ω2g3, g1 + ω2g2 + ωg3}

= {(a1 + a2 + a3)(g1 + g2 + g3), (a1 + ω2a2 + ωa3)(g1 + ωg2 + ω2g3),

(a1 + ωa2 + ω2a3)(g1 + ω2g2 + ωg3)}.

This gives elements of the form

(
n∑
i=1

aiχ(g−1i )

)(
n∑
i=1

χ(hi)hi

)
. Satisfying equation (2.3), the

determinant of M in this basis is the product:

∏
χ∈Ĝ

(∑
aiχ(g−1i )

)
= (a1 + a2 + a3)(a1 + ω2a2 + ωa3)(a1 + ωa2 + ω2a3).

This is clearly equal to |aij−1|, and thus |xij|.

General Finite Groups

Not surprisingly, perhaps, Dedekind’s theorem cannot be extended to general finite

groups. In the general case, irreducible non-linear factors do occur. For example, the group

determinant for S3 contains irreducible non-linear factors. This determinant was computed
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by Dedekind, and he sought to factor the terms further through the use of hypercomplex

numbers [3], cf. [4]. To see that θ(S3) does indeed contain irreducible non-linear factors, we

will use the variable substitutions given by Dedekind in a letter to Frobenius dated April 6,

1896 [4]: θ(S3) = Φ1Φ2Φ
2
3, where

Φ1 = x1 + x2 + x3 + x4 + x5 + x6

Φ2 = x1 + x2 + x3 − x4 − x5 − x6

Φ3 = x21 + x22 + x23 − x24 − x25 − x1x2 − x1x3 − x2x3 + x4x5 + x4x6 + x5x6 .

Next, using the change of variables

u1 = x1 + ωx2 + ω2x3, v1 = x4 + ωx5 + ω2x6,

u2 = x1 + ω2x2 + ωx3, v2 = x4 + ω2x5 + ωx6,

we can write Φ3 as (u1u2 − v1v2). Since this is a second degree polynomial, it can only

be factored into a product of two linear polynomials. For the most general possible form,

consider

(a+ bu1 + cu2 + dv1 + ev2)(A+Bu1 + Cu2 +Dv1 + Ev2)

= C1 + C2u1 + C3u2 + C4v1 + C5v2 + C6u1u2 + C7u1v1 + C8u1v2

+C9u2v1 + C10u2v2 + C11v1v2 + C12u
2
1 + C13u

2
2 + C14v

2
1 + C15v

2
2 . (2.4)

Noting that there is no constant or linear term in Φ3, the terms in our general factor, a and A,

must be zero. Since the degree of each independent variable in Φ3 is one, the coefficient for

each variable must be zero in one of the factors. Starting with u1, let b = 0. Then, since

u1u2 does occur, it must be that C = 0. Next, for v1, we can choose d = 0. If we chose

otherwise, the proof could be continued in the same fashion. Given that v1v2 occurs, we
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must have E = 0. Now (2.4) becomes

(cu2 + ev2)(Bu1 +Dv1) = BCu1u2 + CDu2v1 +Beu1v2 +Dev1v2 . (2.5)

Because u2v1 and u1v2 do not occur in Φ3, it must be that CDu2v1 = Beu1v2. Since the

independent variables cannot be combined, it can only be that C or D and B or e equal zero.

However, no matter which two we choose, our entire polynomial (2.5) disappears. Therefore,

Φ3 is irreducible.
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