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any observable L in state |t)) is given by

(@|L|y) = Tr [¥)(¥] L.

Here are the steps to prove it. Pick any basis |i). Then, us j
the definition of trace, write

Tr [Y) (| L =) (i) ($|L]3).

1

The two factors in the summation are just numbers, so we
can reverse their ordering,

Tr )Wl L=} (WILIi)ily).

Carrying out the sum and using ) |i)(i| = I, we get
Tr [9) (| L = ($[L[¢).

The right side is just the expectation value of L.

7.3 Density Matrices: A New Tooli

Up to now, we have learned how to make predictions about

a system when we know the system’s exact quantum state.
But more often than not, we don’t have complete knowledge
of the state. For example, suppose Alice has prepared a spin
using an apparatus oriented along some axis. She gives the =
spin to Bob but doesn’t tell him the axis along which the
apparatus was oriented. Perhaps she gives him some partial 1
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. formation, such as the fact that the axis was either along
ulle . axis or the z axis, but she refuses to tell him more than
tlza.tt What does Bob do? How does he use this information
{0 make predictions?

Bob reasons as follows: If Alice prepared the spin in the
state [1), then the expectation value of any observable L is

Tr [§)([L = (YILY).

On the other hand, if Alice prepared the spin in state |é),
then the expectation value of L is

Tr |¢)(¢IL = (¢[L|¢).

What if there is a 50 percent probability that she prepared
|¢) and a 50 percent probability that she prepared |¢)? Ob-
viously, the expectation value is
1 wilate
(L) = T )WL + 5T [ GIL.
All we are doing is averaging over Bob’s ignorance of the
state prepared by Alice.

But now we can combine the terms into a single expres-
sion by defining a density matrix p that encodes Bob’s knowl-
edge. In this case the density matrix is half the projection
operator onto |@) plus half the projection operator onto [¥),

1 1
p=5l) ] + 51000l
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We've now packaged all of Bob’s knowledge of the
into a single operator p. At this point, the rule to co
expectation values becomes very simple:

(L) =Tr pL.

We can generalize this. Suppose that Alice tells Bob that
has prepared one of several states—call them |¢1), |¢2),
and so on. Moreover, she specifies probabilities Py, P, P:
for each of these states. Bob can still package all his kni
edge into a density matrix:

p = Pi|¢1)(d1] + Palo2)(@a| + Ps|¢s)(¢s| + ...

Furthermore, he can use exactly the same rule, Eq. 7.13, e
compute the expectation value.
When the density matrix corresponds to a single state, it

case, we say that the state is pure. A pure state represe
the maximum amount of knowledge that Bob can have o
quantum system. But in the more general case, the dens
matrix is a mix of several projection operators. We then sai_}
that the density matrix represents a mized state. '\
I have used the term density matriz, but strictly speaking,
p is an operator. It only becomes a matrix when a basis
chosen. Suppose we choose the basis |a). The density matri ;.."
is just the matrix representation of p with respect to this’{
basis: ‘
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Don’t understand how this equation comes up!

Paar = {alpla’).

[f the matrix representation of L is Ly, then 7.13 takes the

form And also don’t understand how this equation comes up!
Ly =Y Lotjalbaiit: (7.14)
a,a’

7.4 Entanglement and Density
Matrices

Classical physics also has its notion of pure and mixed states,
although they are not called by those names. Just to illus-
trate, let’s consider a system of two particles moving along
a line. According to the rules of classical mechanics, we can
calculate the orbits of the particles if we know the values
of their positions (z; and zp) and momenta (p; and pp) at
a certain instant in time. The state of the system is thus
specified by four numbers: z1, T2, p1, and py. If we know
these four numbers, we have as complete a description of the
two-particle system as it is possible to have: there is no more
to know. We can call this a pure classical state.

Often, however, we don’t know the exact state, but only
some probabilistic information. That information can be
encoded in a probability density

p(z1, T2, P1,P2)-

A classical pure state is just a special case of a probability



