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Abstract

This document attempts to derive and explain the Hyperbolic Trigono-
metric Functions from a geometric perspective. Many previous versions of
this same derivation exist but this document’s purpose is to step through the
derivation in an understandable manner. The most common definitions of the
two primary hyperbolic functions cosh (t) and sinh (t) are as follows:

sinh (t) =
eα − e−α

2

cosh (t) =
eα + e−α

2

The geometric basis for this definition is commonly forgotten , and it is in
order to clarify this definition is the purpose of this composition.
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1 Looking at the Basics

We begin by reviewing in a new perspective the geometric and algebraic circular
trigonometric functions and applying the same concepts in the perspective of the
unit hyperbola.

1.1 The basics of the circular trigonometric functions

The unit circle in cartesian form is defined as:

x2 + y2 = 1 (1)

and in parametric form is defined as:

x (t) = cos t (2)

y (t) = sin t (3)

Thus, any point on the unit circle can be characterized as (x (t) , y (t)):

x
1

y

(x (t) , y (t))

For future reference, we will derive two of the three trigonometric identities (by
simply substituting the equations (2) and (3) into (1) and solving for tan t):

cos2 t+ sin2 t = 1 (4)

1 + tan2 t = sec2 t (5)

tan t =
√

sec2 t− 1 (6)

Consider a point on the unit circle Pc. The point can be described as (x(θ), y(θ))
where θ is the angle by which the segment (1, 0) is swept to reach Pc, and x and y
are functions defined by (2) and (3). Also consider the sector S with angle θ.

x1

y

Pc
Sθ
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Acircle = πr2

Aunit−circle = π

Asemicircle =
π

2

The area of the unit-circle and the area of the semicircle are specific instances of
the area of sector S, AS where θ = 2π and θ = π, respectively. This is why the
formula for the area of the sector formed within the unit circle is:

AS =
θ

2

Notice that the area of the sector AS can be calculated for this unit circle as half the
angle θ. Looking at it from another perspective, the concept of the trigonometric
angle is defined as twice the area that the swept segment covers.

θ = 2AS

Visually, the sum of the areas formed by the sector of θ and its reflection about the
X axis can be used as the parameter for functions (2) and (3) (Shown below).

Pc =
(
x
(
2AS

)
, y
(
2AS

))
Most importantly, we can redefine the point Pc using this property, and notice that
Pc is essentially reliant on AS rather than θ.

x
1

y

Pc =
(
x
(
2AS

)
, y
(
2AS

))
Sθ
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1.2 Looking at the Hyperbola

The unit hyperbola in cartesian form is defined as:

x2 − y2 = 1 (7)

Just as the unit circle can be defined using parametric equation involving the cir-
cular trigonometric functions cos and sin, the unit hyperbola can be defined by the
parametric equation involving the hyperbolic trigonometric functions cosh and sinh.
This is the parametric equation for the hyperbola:

x
(
t
)

= cosh t (8)

y
(
t
)

= sinh t (9)

Just as the point on the unit circle Pc is defined by functions (2) and (3), the point
on the unit hyperbola Ph can be described as (x(α), y(α)) where α is the angle
created from the point (1, 0) to Ph and x and y are functions defined by (8) and
(9).

1

Ph = (x(α), y(α))

Just like before, let us also consider the region R formed by angle α. The hyperbolic
angle can be defined to be equivalent to twice the area of the region R.

AR =
α

2
α = 2AR

Visually, the reflection of region R about the x axis can be used to represent the
angle α.

1

Ph

R

α = 2R
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Solving for y in equation (7) we get:

y =
√
x2 − 1

Now we can redefine the point Ph in terms of x and y:

Ph =

(
x,
√
x2 − 1

)
=

(
x
(
t
)
, y
(
t
))

Using this, we can find the formula for finding the value of AR.

Ph =
(
x,
√
x2 − 1

)

α
2

x(α)

y(α)
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2 Finding and Solving the Area Formula

By finding the area of the region in terms of the x and y coordinates of the point
Ph we will be able to find the equations of the horizontal and vertical components
of Ph in terms of the region.

2.1 Finding the Area Formula

To find the area of the region R (AR), we must use integration. Notice that the
region R resembles the shape of a triangle, but does not include any point right
of the hyperbolic function. To find the AR we must subtract the area under the
hyperbolic function (AH) from the area of the triangle.

AR = Atriangle −AH

For

Ph =

(
x,
√
x2 − 1

)
=
(
b, h
)

The area under the hyperbola starts from where x = 1 to until when x = b, and we
will integrate the function

√
x2 − 1.

Atriangle =
bh

2

AH =

∫ b

1

√
x2 − 1 dx

Thus, the formula for AR is shown to be:

AR =
bh

2
−
∫ b

1

√
x2 − 1 dx
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2.2 Simplifying the Integral for AH

We must solve for the variable b in AR. Let us start by simplifying the formula for
AH . ∫ b

1

√
x2 − 1 dx

Looking closely, is similar to trigonometric expression in formula (6). We can at-
tempt to simplify this integral.

x = sec θ (10)

We’ll substitute a trigonometric function of θ for x.

dx

dθ
= sec θ tan θ

dx = sec θ tan θ dθ

AH =

∫ x=b

x=1

√
sec2 θ − 1

(
sec θ tan θ dθ

)
AH =

∫ x=b

x=1

tan θ
(
sec θ tan θ

)
dθ

To exchange the lower and upper bounds of integration, we solve for θlower and
θupper in equation (10).

1 = sec (θlower)

sec−1 (1) = θlower

θlower = 0,

b = sec (θupper)

θupper = sec−1 b

AH =

∫ sec−1 b

0

tan θ
(
sec θ tan θ dθ

)
The process by which we simplified is actually Trigonometric Substitution.
Using the Integration by Parts method, we can further reduce this expression. This
can be to our advantage because the derivative of tan θ is sec2 θ and the anti-
derivative of sec θ tan θ is sec θ.

u = tan θ du = sec2 θ dθ (11)

dv = sec θ tan θ dθ v = sec θ (12)
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Remembering that
∫ b
a
u dv = uv

∣∣b
a
−
∫ b
a
v du , we will simplify AH using equations

(11) and (12).

AH =

∫ sec−1 b

0

tan2 θ sec θ dθ (13)

∫ sec−1 b

0

tan θ
(
sec θ tan θ dθ

)
= sec θ tan θ

∣∣∣∣∣
sec−1 b

0

−
∫ sec−1 b

0

sec3 θ dθ (14)

We will next simplify the minuend sec θ tan θ
∣∣∣sec−1 b

0
. Knowing that we must pass in

sec−1 b, we can manipulate the equation (6) using to make that operation simpler.

sec θ tan θ

∣∣∣∣sec−1 b

0

= sec θ
√

sec2 θ − 1

∣∣∣∣∣
sec−1 b

0

Now, we can evaluate this expression and simplify it.

= sec (sec−1 b)
√

sec2 (sec−1 b)− 1− sec 0
√

sec2 0− 1

Simplifying the expression becomes a simple matter of algebraic manipulation.

sec 0 =
1

cos 0
= 1

= b
√
b2 − 1− 1

√
12 − 1

= b
√
b2 − 1

Now recall that the point
(
b, h
)

lies on the hyperbola. Thus, it follows that h must

be equivalent to
√
b2 − 1. Thus, we can substitute bh in for b

√
b2 − 1 and simplify

equation (14).

AH = bh−
∫ sec−1 b

0

sec3 θ dθ (15)

To simplify the subtrahend, we must recall equation (5) and substitute, and then
distribute the integration.∫ sec−1 b

0

sec3 θ dθ =

∫ sec−1 b

0

sec θ (tan2 θ + 1) dθ

=

∫ sec−1 b

0

sec θ dθ +

∫ sec−1 b

0

sec θ tan2 θ dθ
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We must now substitute into equation (15).

AH = bh−

(∫ sec−1 b

0

sec θ dθ +

∫ sec−1 b

0

sec θ tan2 θ dθ

)

AH = bh−
∫ sec−1 b

0

sec θ dθ −
∫ sec−1 b

0

sec θ tan2 θ dθ

Since equation (13) shows AH to be equal to the right-most subtrahend, we can
create a new equation with which we can solve for the original equation.∫ sec−1 b

0

tan2 θ sec θdθ = bh−
∫ sec−1 b

0

sec θ dθ −
∫ sec−1 b

0

sec θ tan2 θdθ

Notice that we can solve for
∫ sec−1 b

0
sec θ tan2 θ dθ.

2

∫ sec−1 b

0

sec θ tan2 θdθ = bh−
∫ sec−1 b

0

sec θ dθ∫ sec−1 b

0

sec θ tan2 θdθ =
bh

2
− 1

2

∫ sec−1 b

0

sec θ dθ

Recalling the definitions of AR and AH , we use them to make a new equation.

AR =
bh

2
−
∫ b

1

√
x2 − 1 dx∫ b

1

√
x2 − 1 dx =

bh

2
− 1

2

∫ sec−1 b

0

sec θ dθ

AR =
bh

2
−

(
bh

2
− 1

2

∫ sec−1 b

0

sec θ dθ

)

AR =
1

2

∫ sec−1 b

0

sec θ dθ

2AR =

∫ sec−1 b

0

sec θ dθ

α =

∫ sec−1 b

0

sec θ dθ
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2.3 Simplifying the Equation for α

To further simplify this equation, we will now look at a similar problem and relate
it to the original problem.

w = sec θ + tan θ
dw

dθ
= sec θ tan θ + sec2 θ

dw = sec θ
(

tan θ + sec θ
)
dθ

dw = sec θ
(
w
)
dθ

dw

w
= sec θ dθ

We can now simplify by substituting dw
w into the original equation and solve for α.

α =

∫ θ=sec−1 b

θ=0

dw

w

α = ln
(∣∣w∣∣) ∣∣∣∣∣

θ=sec−1 b

θ=0

α = ln

(∣∣∣ sec θ + tan θ
∣∣∣) ∣∣∣∣∣

sec−1 b

0

α = ln

(∣∣∣ sec θ +
√

sec2 θ − 1
∣∣∣) ∣∣∣∣sec−1 b

0

α = ln

(∣∣∣b+
√
b2 − 1

∣∣∣)− ln(∣∣∣ sec 0 +
√

sec2 0− 1
∣∣∣)

α = ln

(∣∣∣b+
√
b2 − 1

∣∣∣)− ln(∣∣∣1 +
√

1− 1
∣∣∣)

α = ln

(∣∣∣b+
√
b2 − 1

∣∣∣)− ln(1)

α = ln
(∣∣∣b+

√
b2 − 1

∣∣∣)
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3 Finding the Horizontal and Vertical Components
of Ph

By finding the equations of b and h in terms of twice the area of the region formed
by the point Ph we can find the equations to the hyperbolic functions.

3.1 Finding the Horizontal Component

Let us try solving for b by first exponentiating by e and raising by the power of two.

eα =
∣∣∣b+

√
b2 − 1

∣∣∣(
eα
)2

=
(∣∣∣b+

√
b2 − 1

∣∣∣)2
e2α = b2 + 2b

√
b2 − 1 + b2 − 1

e2α = 2b2 + 2b
√
b2 − 1− 1

e2α = 2b(b+
√
b2 − 1)− 1

e2α = 2b(eα)− 1

e2α

eα
=

2b(eα)− 1

eα

eα = 2b− e−α

Solving for b we arrive at:

b =
eα + e−α

2
(16)

Recalling from equations (8) and (9), we can see that the horizontal component
of any point on the unit hyperbola is defined by cosh t and by showing that b is
equivalent to that horizontal component, we have shown that:

cosh t =
eα + e−α

2
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3.2 Finding the Vertical Component

Knowing b we can find the vertical component by recalling the equation (16) and
substituting b for x.

h =
√
b2 − 1

h =

√√√√(eα + e−α

2

)2

− 1

h =

√
1

4

[(
eα + e−α

)2
− 4

]
h =

1

2

√(
eα + e−α

)2
− 4

h =
1

2

√(
e2α + 2eαe−α + e−2α

)
− 4

h =
1

2

√(
e2α + 2 + e−2α

)
− 4

h =
1

2

√
e2α − 2 + e−2α

h =
1

2

√(
eα − e−α

)2
h =

eα − e−α

2

Thus, since the vertical component h can be represented as a function of twice the
area of the region swept by the point Ph, we have found the equation for sinh t.

sinh t =
eα − e−α

2
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