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Notice the dagger that indicates Hermitian conjugation. Now
let’s plug Egs. 4.1 and 4.3 into Eq. 4.2:

(T(0)[U'()U(t)|®(0)) = 0. (4.4)

To examine the consequences of this equation, consider an
orthonormal basis of vectors |i). Any basis will do. The
orthonormality is expressed in equation form as '

(il7) = b,
where §;; is the usual Kronecker symbol.

Next, let's take |®(0)) and |W(0)) to be members of th .‘
orthonormal basis. Substituting into Eq. 4.4 gives

Ui Ul =0 (@ # j)

whenever i and j are not the same. On the other hand, if
and j are the same, then so are the output vectors U(t)|i)
and U(#)|7). In that case, the inner product between them
should be 1. Therefore, the general relation takes the form;

(iU (£)U(2)]5) = 6.

In other words, the operator UT(#)U(t) behaves like the unit
operator I when it acts between any members of a basis
set. From here it is an easy matter to prove that Ut(¢)U(t)
acts like the unit operator I when it acts on any state. An
operator U that satisfies
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utu=1

is called unitary. In physics lingo, time evolution is unitary.

Unitary operators play an enormous role in quantum
mechanics, representing all sorts of transformations on the
state-space. Time evolution is just one example. Thus, we
conclude this section with a fifth principle of quantum me-

chanies:

e Principle 5: The evolution of state-vectors with time
is unitary.

' Exercise 4.1: Prove that if U is unitary, and if |4) and |B)
are any two state-vectors, then the inner product of U|A)
and U|B) is the same as the inner product of [4) and |B).
One could call this the conservation of overlaps. It expresses
the fact that the logical relation between states is preserved

. with time.

4.5 The Hamiltonian

In the study of classical mechanics, we became familiar with
the idea of an incremental change in time. Quantum mechan-
i0s is no different in this respect: we may build up finite time
ntervals by combining many infinitesimal intervals. Doing
50 will lead to a differential equation for the evolution of
the state-vector. To that end, we replace the time inter-
Val ¢ with an infinitesimal time interval e and consider the
time-evolution operator for this small interval.
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mental changes. The first principle is unitarity:

Ut(e)U(e) = I. (4.5)

The second principle is continuity. This means that the
state-vector changes smoothly. To make this precise, firsg

in this case the time-evolution operator is merely the unit
operator /. Continuity means that when e is very small, U(e)
is close to the unit operator, differing from it by something

of order e. Thus, we write

Ue) = I— ek (4.6)

You may wonder why I put a minus sign and an i in fron

of H. These factors are completely arbitrary at this stag e
In other words, they are a convention that has no content.
I used them with an eye toward the future, when we wil
recognize H as something familiar from classical physics.

We will also need an expression for U'. Remembe n
that Hermitian conjugation requires the complex conjugas

tion of coeflicients, we find that

Ul(e) = I + ieH'. (4.7)

Now we plug Eqs. 4.6 and 4.7 into the unitarity condition of

Eq. 4.5:

(I +ieHN(I — ieH) = I.
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Expanding to first order in ¢, we find

Don’t Understand

» H -H=0
or, in a format that is more illuminating,
H' = H. (4.8)

This last equation expresses the unitarity condition. But it
also says that H is a Hermitian operator. This has great sig-
nificance. We can now say that H is an observable, and has
a complete set of orthonormal eigenvectors and eigenvalues.
As we proceed, H will become a very familiar object, namely
the quantum Hamiltonian. Its eigenvalues are the values that
would result from measuring the energy of a quantum sys-
tem. Exactly why we identify H with the classical concept of
a Hamiltonian, and its eigenvalues with energy, will become
clear shortly.

Let’s return now to Eq. 4.1 and specialize it to the in-
finitesimal case t = e. Using Eq. 4.6, we find

[¥(€)) = [¥(0))—ieH|T(0)).
This is just the kind of equation that we can easily turn into

4 differential equation. First, we transpose the first term on
the right side over to the left side, and then divide by €:

[ — 1¥O) _ _ipg9(0)).
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If you remember your calculus (see Volume I for a quick
review), you'll recognize that the left-hand side of this equa~
tion looks exactly like the definition of a derivative. If we
take the limit as € — 0, it becomes the time derivative of the
state-vector:

a|v)

Sl - iH|Y).

= (4.9)

We originally set things up so that the time variable wa 8
0. Had
chosen another time and done the same thing, we would

zero, but there was nothing special about ¢ =

have gotten exactly the same result, namely, Eq. 4.9. This
equation tells us how the state-vector changes: if we know
the state-vector at one instant, the equation tells us what it
will be at the next. Eq. 4.9 is important enough to have &
name. It is called the generalized Schridinger equation,
more commonly, the time-dependent Schridinger equation.
If we know the Hamiltonian, it tells us how the state of an
undisturbed system evolves with time. Art likes to call this
state-vector Schrédinger’s Ket. He even wanted to render
the Greek symbol with little whiskers,! but I had to draw
the line somewhere.

4.6 What Ever Happened to h?

I'm sure you have all heard of Planck’s constant. Planck him=
self called it h and gave it a value of about 6.6 x 10~ kg m? / ~

LOK, not really.
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Later generations redefined it, dividing by a factor of 2w and
calling the result A:

h= i = 1.054571726 - -
2

% 107% kg m?/s.

Why divide by 277 Because it saves us from having to write
27 in lots of other places. Considering the importance of
Planck’s constant in quantum mechanics, it seems a little
odd that it hasn't come up vet. We're going to correct that
now.

In quantum mechanics, as in classical physics, the Hamil-
tonian is the mathematical object that represents the energy
of a system. This raises a question that, if you are very alert,
may have been a source of confusion. Take a good look at
Eq. 4.9. It doesn’t make dimensional sense. If you ignore
|¥) on both sides of the equation, the units on the left side
are inverse time. If the quantum Hamiltonian is really to be
identified with energy, then the units on the right side are
energy. Energy is measured in units of joules, or kg - m?/s%
Evidently, I've been cheating a little bit. The resolution
of this dilemma involves h, a universal constant of nature,
which happens to have units of kg - m?/s. A constant with
these units is exactly what we need to make Eq. 4.9 consis-
tent. Let's rewrite it with Planck’s constant inserted in a
Way that makes it dimensionally consistent:

e

= (4.10)

= —iH|¥).

Wh.\“ is it that A is such a ridiculously small number? The
Mswer has much more to do with biology than with physics.



