To see this, let us first consider a system with total energy E that con-
sists of two weakly interacting subsystems, In this context, weakly interacting
means that the subsystems can exchange energy but that we can write the
total energy of the system as the sum of the energies E; and E; of the sub-
systems. There are many ways in which we can distribute the total energy
over the two subsystems such that Ey + E; = E. For a given choice of E4, the
total number of degenerate states of the system is (21(E) x Q3(Ez). Note
that the total number of states is not the sum but the product of the number
of states in the individual systems. In what follows, it is convenient to have
a measure of the degeneracy of the subsystems that is additive. A logical
choice is to take the (natural) logarithm of the degeneracy. Hence:

InQ(Eq,E—Ey) =InQ(Eq) + InQ(E — Eq). (2.1.1)

We assume that subsystems 1 and 2 can exchange energy. What is the most
likely distribution of the energy? We know that every energy state of the total
system is equally likely. But the number of eigenstates that correspond to a
given distribution of the energy over the subsystems depends very strongly
on the value of E;. We wish to know the most likely value of E4, that is, the
one that maximizes In Q(E;, E—E;). The condition for this maximum is that
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We introduce the shorthand notation

B(E,V,N) = (aan[E,v,N}) . (2.1.4)
ot NRY
With this definition, we can write equation (2.1.3) as
B(Ey, V1,Nq) = B(E2, V2, N2). (2.1.5)

Clearly, if initially we put all energy in system 1 (say), there will be energy
transfer from system 1 to system 2 until equation (2.1.3) is satisfied. From
that moment on, no net energy flows from one subsystem to the other, and
we say that the two subsystems are in (thermal) equilibrium. When this



