Since every ideal / in the Noetherian ring k[xy, x,, . . ., x,] is finitely generated, say
I =(f1, f2,..., fy),itfollows from (3) that Z(I) = Z(ONZ(fL)N---NZ(f,).ie,
each affine algebraic set is the intersection of a finite number of hypersurfaces in A".
Note that this “geometric” property in affine n-space is a consequence of an “algebraic”
property of the corresponding coordinate ring (namely, Hilbert’s Basis Theorem).

If V is an algebraic set in affine n-space, then there may be many ideals I such
that V. = Z(I). For example, in affine 2-space over R the y-axis is the locus of the
ideal (x) of R[x, y], and also the locus of (x?), (x?), etc. More generally, the zeros
of any polynomial are the same as the zeros of all its positive powers, and it follows
that Z(I) = Z(I*) for all k > 1. We shall study the relationship between ideals that
determine the same affine algebraic set in the next section when we discuss radicals of
ideals,

While the ideal whose locus determines a particular algebraic set V is not unique,
there is a unique largest ideal that determines V, given by the set of all polynomials
that vanish on V. In general, for any subset A of A" define

L(A) =1{f €klx1,.... x4 | flai,aq,...,a,) =0forall (aj, a,...,a,) € A}.

It is immediate that Z(A) is an ideal, and is the unique largest ideal of functions that
are identically zero on A. This defines a correspondence

Z : {subsets in A" } — {ideals of k[A"]}.

Examples
(1) In the Euclidean plane, Z(the x-axis) is the ideal generated by y in the coordinate ring
REx, y].
(2) Overany field k, the ideal of functions vanishing at (a1, a3, . . ., a,) € A" is a maximal
ideal since it is the kernel of the surjective ring homomorphism from k[x1, . .., x,] to
the field k given by evaluation at (a1, a2, .. ., a,). It follows that

I((a1,a2,...,an)) = (x1 — a1, x2—az, ..., Xy —ap).

(3) Let V.= Z(x3 — y?) in A2. If (a,b) € A? is an element of V then ¢ = b2, If
a # 0, then also b # 0 and we can write a = (b/a)?, b = (b/a)?. It follows
that V is the set {(a®, a®) | @ € k). For any polynomial f(x, y) € k[x, y] we can
write f(x,y) = fox) + fix)y + > = y)g(x,y). For f(x,y) € L(V), iei,
f(a?,a% = 0 forall a € k; it follows that fo(a?) + fi(a®)a® = 0 for all a € k. If
So(x) =a,x" + ... +apand f1(x) = bgx® + - + by then

foOD) + 22 f1(xh) = @x¥ + - 4 ag) + Bsx® T 4.+ box®)

and this polynomial is O for every a € k. If k is infinite, this polynomial has infinitely
many zeros, which can happen only if all of the coefficients are zero. The coefficients
of the terms of even degree are the coefficients of fy(x) and the coefficients of the
terms of odd degree are the coefficients of fj(x), so it follows that Jfo(x) and fi(x)
are both 0. It follows that f(x, y) = (x> — y2)g(x, y), and so

Z(V) = (x* = y%) C k[x, .

If k is finite, however, there may be elements in Z(V) not lying in the ideal (x? — y?).
For example, if k = I, then V is simply the set {(0, 0), (1, 1)} and so Z(V) contains
the polynomial x(x — 1) (cf. Exercise 15).
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The following properties of the map Z are very easy exercises. Let A and B be
subsets of A".

(6) If A C B then Z(B) C I(A) (i.e., T is also contravariant).
(7) Z(AU B) = Z(A) N I(B).
8) Z(W) = klxy, ..., x,] and, if k is infinite, Z(A") = 0.

Moreover, there are easily verified relations between the maps Z and Z:

(9) If Ais any subset of A" then A € Z(Z(A)), and if ] is any ideal then I < Z(Z)).
10) If V = Z(I) is an affine algebraic set then V = Z(Z(V)), and if = T(A) then
I(ZU) =1, ie., Z(Z(ZD))) = Z) and Z(Z(Z(A))) = Z(A).

The last relation shows that the maps Z and 7 act as inverses of each other provided
one restricts to the collection of affine algebraic sets V = Z () in A" and to the set of
ideals in k[A"] of the form Z(V). In the case where the field k is algebraically closed
we shall (in the following two sections) characterize those ideals / that are of the form
Z(V) for some affine algebraic set V in terms of purely ring-theoretic properties of the
ideal I (this is the famous “Zeros Theorem” of Hilbert, cf. Theorem 32).

Definition. If V C A”is an affine algebraic set the quotient ring k[A"]/Z(V ) is called
the coordinate ring of V, and is denoted by k[V].

Note that for V = A" and k infinite we have Z(V) = 0, so this definition extends
the previous terminology. The polynomials in k[A"] define k-valued functions on V
simply by restricting these functions on A” to the subset V. Two such polynomial
functions f and g define the same function on V if and only if f — g is identically O
on V, which is to say that f — g € Z(V). Hence the cosets f = f + Z(V) giving the
elements of the quotient k[ V] are precisely the restrictions to V of ordinary polynomial
functions f from A" to k (which helps to explain the notation k[V]). If x; denotes the
i™ coordinate function on A" (projecting an n-tuple onto its i™ component), then the
restriction X; of x; to V (which also just gives the i component of the elements in V
viewed as a subset of A") is an element of k[V], and k[V] is finitely generated as a 1
k-algebra by X1, ..., %, (although this need not be a minimal generating set). i

Example

IfV =2(xy~1)is the hyperbola y = 1/x in R2, then R[V] = R[x, y]/(xy — 1). The
polynomials f(x, y) = x (the x-coordinate function) and g(x, y) = x + (xy — 1), which
are different functions on K2, define the same function on the subset V. On the point
(1/2,2) € V, for example, both give the value 1 /2. In the quotient ring R[V] we have
xy = 1,50 R[V] = R[x, 1/x]. For any function f € R[V] and any (a, b) € V we have
fla, b) = f(a, 1/a) for any polynomial f € k[x, y] mapping to £ in the quotient.

Suppose now that V < A" and W € A™ are two affine algebraic sets. Since V
and W are defined by the vanishing of polynomials, the most natural algebraic maps
between V and W are those defined by polynomials:
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