Definition. A map ¢ : V — W is called a morphism (or polynomial map or regular

map) of algebraic sets if there are polynomials ¢, ..., @, € k[x1, x2, ..., x,] such that
(p((ah * -~7an)) = (wl(als "'san): "'7(pm(als ""aﬂ))
forall (ay,...,a,) € V. The map ¢ : V — W is an isomorphism of algebraic sets if

there is amorphism ¥ : W — V withgo ¢y = lyand ¥ o = 1.

Note that in general ¢y, @3, ..., ¢, are not uniquely defined. For example, both
f =xand g = x + (xy — 1) in the example above define the same morphism from
V=Zxy—1DtoW =AL

Suppose F is a polynomial in k[x,...,x,]. Then F o = F(gy, @2, ..., ¢0m)
is a polynomial in k[x, ..., x,] since ¢y, ¢2, ..., ¢, are polynomials in x, ..., x,.
If F e Z(W), then F o ¢((a1,az,...,a,)) = 0 for every (a,az,...,a,) € V
since ¢((ay,az,...,a,)) € W. Thus F o 9 € Z(V). It follows that ¢ induces
a well defined map from the quotient ring k[x, ..., x,]/Z(W) to the quotient ring
klxi, ..., x,J/Z(V)!

@ k[W] — k[V]
f foyp
where f o ¢ is given by F o ¢ + Z(V) for any polynomial F = F(xy, ..., x,,) with
f = F + Z(W).Itis easy to check that ¢ is a k-algebra homomorphism (for example,
o(f+8 =(f+8ocp=fop+gop=0y(f)+@(g) shows that § is additive).
Note also the contravariant nature of ¢: the morphism from V to W induces a k-algebra
homomorphism from k[W] to k[V].

Suppose conversely that @ is any k-algebra homomorphism from the coordinate
ring k[W1 = klxy1, ..., xu]/Z(W) to k[V] = k[xy, ..., x,]/Z(V). Let F; be a repre-
sentative in k[x, ..., x,] for the image under @ of x; € k[W] (i.e., @ (x; mod Z(W))
is F;modZ(V)). Then ¢ = (F,..., F,) defines a polynomial map from A" to A™,
and in fact ¢ is a morphism from V to W. To see this it suffices to check that ¢ maps a

point of V to a point of W since by definition ¢ is already defined by polynomials. If
g € I(W) C klxy, ..., xp], then in kK[ W] we have

gxi+IW), ... .xpu+IW)) =gx1,..., %) + (W) =I(W) =0 € k[W],

and so
DP(gx1 +IW), ..., xm +I(W))) =0 € k[V].

Since @ is a k-algebra homomorphism, it follows that
g(Px  +ZI(W)),..., 2% +Z(W)) =0 € k[V].
By definition, @ (x; + Z(W)) = F, mod Z(V), so
gFimodZ(V),..., F,modZ(V)) =0 € k[ V],

ie.,
g(Fy, ..., Fy) € Z(V).

It follows that g(Fi(ai,...,an), ..., Fulai,...,ay,)) = 0 for every (ay, ..., a,) in
V. This shows that if (ay,...,a,) € V, then every polynomial in Z(W) vanishes
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Proposition 15. The Zariski closure of a ;ubset Ain A" 1s Z(Z(A)).

Proof: Certainly A € Z(Z(A)). Suppose V is any algebraic set containing A:
A C V. Then Z(V) € Z(A) and Z(Z(A)) € Z(Z(V)) = V, so Z(Z(A)) is the
smallest algebraic set containing A.

If ¢ : V. — W is amorphism of algebraic sets, the image ¢ (V) of V need not be an
algebraic subset of W, i.e., need not be Zariski closed in W. For example the projection
of the hyperbola V = Z(xy — 1) in R? onto the x-axis has image R' — {0}, which as
we have just seen is not an affine algebraic set.

The next result shows that the Zariski closure of the image of a morphism is deter-
mined by the kernel of the associated k-algebra homomorphism.

Proposition 16. Suppose ¢ : V — W is a morphism of algebraic sets and ¢ : k[W] —
k[V1]1is the associated k-algebra homomorphism of coordinate rings. Then
(1) The kernel of @ is Z(p(V)).
(2) The Zariski closure of ¢(V) is the zero set in W of ker @. In particular, the
homomorphism ¢ is injective if and only if @ (V) is Zariski dense in W.

Proof: Since ¢ = f o ¢, we have ¢(f) = 0 if and only if (f o ¢)(P) = 0 for
all P € V,ie., f(Q) = 0forall Q = ¢(P) € ¢(V), which is the statement that
f € I(p(V)), proving the first statement. Since the Zariski closure of ¢ (V) is the zero
set of Z(¢(V)) by the previous proposition, the first statement in (2) follows.

If ¢ is injective then the Zariski closure of ¢ (V) is Z(0) = W and so (V) is Zariski
dense. Conversely, suppose ¢ (V) is Zariski dense in W, i.e., Z(Z(¢(V))) = W. Then
Z(p(V) =T(Z(T(p(V)))) = Z(W) =0and so ker ¢ = 0.

By Proposition 16 the ideal of polynomials defining the Zariski closure of the
image of a morphism ¢ is the kernel of the corresponding k-algebra homomorphism @
in Theorem 6. Proposition 8(1) allows us to compute this kernel using Grobner bases.

Example: (Implicitization)
A morphism ¢ : A" — A™ is just a map
e(a,az,...,an)) = (pi1(a1,az,...,an), ..., pm(a1, az, ..., ap))
where ¢; is a polynomial. If k is an infinite field, then Z(A™) and Z(A") are both 0,
so we may write k[A™] = k[y1,..., ym] and k[A"] = k[x1,...,x,]. The k-algebra
homomorphism @ : k[A™] — k[A"] corresponding to g is then defined by mapping y; to
@i = @i(x], ..., xy). The image ¢(A") consists of the set of points (by, ..., b,) with
by =¢i(a1,az,...,an)
by =plar,a2,...,a,)

where a; € k. This is the collection of points in A™ parametrized by the functions
®1, ..., ¢m (With the q; as parameters). In general such a parametrized collection of points
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