is not an algebraic set. Finding the equations for the smallest algebraic set containing these
points is referred to as implicitization, since it amounts to finding a (‘smallest’) collection
of equations satisfied by the b; (the ‘implicit’ algebraic relations).

By Proposition 16, this algebraic set is the Zariski closure of ¢(A") and is the zero set
of ker ¢. By Proposition 8 this kernel is given by A Nk[y1. ..., ym], where A is the ideal
in k[x1,...,%n, Y1, ..., ym] generated by the polynomials y; — @1, ..., Ym — @m- If we
compute the reduced Grobner basis G for A with respect to the lexicographic monomial
orderingxy > -+ > Xp > y1 > -+ > ym, thenthe polynomials of G lying ink[y1. ..., ym]
generate ker 77. The zero set of these polynomials defines the Zariski closure of ¢ (A") and
therefore give the implicitization.

For an explicit example, consider the points A = {(a?,a%) | a € R} in R?. Using
coordinates x, y for R2 and ¢ for R!, the ideal A in R[x, v, z. t]is (x — 12 y— £3). The only
element of the reduced Grobner basis for A for the ordering ¢ > x > y lying in R[x, y] is
x3 — y2, 50 Z(x? — y?) is the smallest algebraic set in R? containing A.

Example: (Projections of Algebraic Sets)
Suppose V C A" is an algebraic set and m < n. Letm : V. — A™ be the morphism
projecting onto the first m coordinates:
n((ay, az, ..., an)) = (a1,a2, ..., am).

If we use coordinates xi, . . ., x, in k[ V] and coordinates y), . . ., ym in k[A™], the k-algebra
homomorphism corresponding to 7 is given by the map

kY1, .oy Ym] — klx1, ... x/Z(V)
Vi > X

Suppose V = Z(I)and I = (f), ..., fs). The Zariski closure of m (V) is the zero set of
kerw = ANk[y1, ..., ym] where A is the ideal in k[x1, ..., X, ¥1, ..., Ym] generated

by the polynomials y; — xJ, ..., ¥m — Xm together with a set of generators for Z(V). The
polynomials involving only yi, . .., ym in the reduced Grobner basis G for A with respect
to the lexicographic monomial ordering x; > -+ > Xy > y1 > -+ > Ym aI¢ generators

for the Zariski closure of 7 (V).

If k is algebraically closed we can actually do better with the help of the Nullstellensatz,
which gives Z(V) = rad I. Then it is straightforward to see that we obtain the same zero
set if in the ideal A we replace the generators for Z(V) by the generators fi, ..., fs of I
(cf. Exercise 46).

For an explicit example, consider projection onto the first two coordinates of V =
Zxy — 22, xz —y, x> —z) in ©3. Using u, v as coordinates in 2, we find the reduced
Grobner basis G for the ideal (4 — x, v — y, xy — 2%, X7 — ¥, x2 — 7) for the ordering
x >y > z > u > vcontains only the polynomial u? — v in C[u, v]. The smallest algebraic
set containing (V) is then the cubic v = ul,

Affine Varieties

We next consider the question of whether an algebraic set can be decomposed into
smaller algebraic sets and the corresponding algebraic formulation in terms of its co-
ordinate ring.

Definitions A nonempty affine algebraic set V is called irreducible if it cannot be
written as V = V; U Va, where V, and V5 are proper algebraic sets in V. An irreducible’
kffine algebraic set is called an affine variety.
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Equivalently, an algebraic set (which is a closed set in the Zariski topology) is
irreducible if it cannot be written as the union of two proper, closed subsets.

Proposition 17.
(1) The affine algebraic set V is irreducible if and only if Z(V) is a prime ideal.
(2) Every nonempty affine algebraic set V may be written uniquely in the form

V=V1UV2U”~UVq

where each V; is irreducible, and V; € V; for all j # i (i.e., the decomposition
is “minimal” or “irredundant™).

Proof: Let I = Z(V) and suppose first that V = V; U V; is reducible, where V; and
V. are proper closed subsets. Since V; # V, there is some function f; that vanishes on
Vi butnoton V,ie., fi € Z(V))—I. Similarly, there is a function f> € Z(V,)—1I. Then
f1f2 vanishes on V, UV, = V, s0 fi f» € I which shows that ] is not a prime ideal.
Conversely, if I is not a prime ideal, there exists f, f> € k[A"] such that f, f, € I
but neither f nor f> belongsto I. Let Vi = Z(f1) NV and V, = Z(f2) N V. Since
the intersection of closed sets is closed, V; and V, are algebraic sets. Since neither f;
nor f, vanishes on V, both V; and V, are proper subsets of V. Because f)f> € I,
V C Z(f1f2) = Z(fi) U Z(f>), and so V is reducible. This proves (1).

To prove (2), let S be the collection of nonempty algebraic sets that cannot be written
as a finite union of irreducible algebraic sets, and suppose by way of contradiction that
S # 0. Let I be a maximal element of the corresponding set of ideals, {Z(V) | V € S},
which exists (by Theorem 2) since k[A"] is Noetherian. Then Vi = Z(ly) is a minimal
element of S. Since V € S, it cannot be irreducible by the definition of &, On the
other hand, if Vo = V) U V, for some proper, closed subsets Vi, V, of V;, then by
the minimality of V, both V| and V, may be written as finite unions of irreducible
algebraic sets. Then V, may be written as a finite union of irreducible algebraic sets, a
contradiction. This proves & = @, i.e., every affine algebraic set has a decomposition
into affine varieties.

To prove uniqueness, suppose V has two decompositions into affine varieties (where
redundant terms have been removed from each decomposition):

V=ViuWu.---uV,=U,U0,U...-UU,.
Then V1 is contained in the union of the U;. Since Vi N U; is an algebraic set for each
i, we obtain a decomposition of V) into algebraic subsets:
Vi=WnUpuvVinU)u---U(ViNU).
Since Vi is irreducible, we must have V| = V| N U; for some j, ie., Vi C U;. By
the symmetric argument we have U; C Vj for some j'. Thus V; C Vinso j =1
and Vi = U;. Applying a similar argument for each V; it follows that r = s and that
V1,..., V) ={Ui, ..., Ug}. This completes the proof.

Corollary 18. An affine algebraic set V is a variety if and only if its coordinate ring
k[V1]is an integral domain.

Proof: This follows immediately since Z(V) is a prime ideal if and only if the
quotient k[V] = k[A"]/Z(V) is an integral domain (Proposition 13 of Chapter 7).
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Definition. If V is a variety, then the field of fractions of the integral domain k[V] is
called the field of rational functions on V and is denoted by k(V'). The dimension of a
variety V, denoted dim V, is defined to be the transcendence degree of k(V) over k.

Examples

(1) Single points in A" are affine varicties since their corresponding ideals in k[A”] are:
maximal ideals. The coordinate ring of a point is isomorphic to k, which is also the
field of rational functions. The dimension of a single point is 0. Any finite set is
the union of its single point subsets, and this is its unique decomposition into affine
subvarieties.

l § (2) The x-axis in R? is irreducible since it has coordinate ring R[x, y]/(y) = R[x], which

l Is an integral domain. Similarly, the y-axis and, more generally, lines in R? are also

irreducible (cf. Exercise 23 in Section 1). Linear sets in R” are affine varieties. The

l 3 field of rational functions on the x-axis is the quotient field R(x) of R[x], which is

; why R(x) is called a rational function field. The dimension of the x-axis (or, more

generally, any line) is 1.

> (3) The union of the x and y axes in R2, namely Z(xy), is not a variety: Z(xy) = Z(x)U

Z(y) is its unique decomposition into subvarieties. The corresponding coordinate

, ring R[x, y1/(xy) contains zero divisors.

(4) The hyperbola xy = 1 in R? is a variety since we saw in Section 1 that its coordinate

1 ring is the integral domain R[x, 1/x]. Note that the two disjoint branches of the

t hyperbola (defined by x > 0 and x < 0) are not subvarieties (cf. also Exercises
12-13).

i} B) fVv=2Z(.I,...,1,)isthe zerosetof linear polynomials?y, . .., I, ink[xi, ..., Xm]

e and V # @, then V is an affine variety (called a linear variety). Note that determining

y whether V' # ¢ is a linear algebra problem.

e

a ‘ We end this section with some general ring-theoretic results that were originally

n motivated by their connection with decomposition questions in geometry.

e . Primary Decomposition of Ideals in Noetherian Rings

The second statement in Proposition 17 shows that any ideal of the form Z(V) in
k[A"] may be written uniquely as a finite intersection of prime ideals, and by Hilbert’s
h Nullstellensatz this applies in particular to all radical ideals when k is algebraically
closed. In a large class of commutative rings (including all Noetherian rings) every
ideal has a primary decomposition, which is a similar decomposition but allows ideals
, that are analogous to “prime powers” (but see the examples below). This decomposition
3y can be considered as a generalization of the factorization of an integer n € Z into the

product of prime powers. We shall be primarily concerned with the case of Noetherian
at ‘ rings.

g Definition. A proper ideal Q in the commutative ring R is called primary if whenever

abe Qanda ¢ Q, then b" € Q for some positive integer n. Equivalently, if ab € Q
anda ¢ Q, then b € rad Q. ‘

he
Some of the basic properties of primary ideals are given in the following proposition.
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