CHAPTER 18

Representation Theory
and Character Theory

18.71 LINEAR ACTIONS AND MODULES OVER GROUP RINGS

For the remainder of the book the groups we consider will be finite groups, unless
explicitly mentioned otherwise. Throughout this section F is a field and G is a finite
group, We first introduce the basic terminology. Recall that if V is a vector space
over F, then G L(V) is the group of nonsingular linear transformations from V to itself
(under composition), and if n € Z*, then GL,(F) is the group of invertible n x n
matrices with entries from F (under matrix multiplication).

Definition. Let G be a finite group, let F be a field and let V be a vector space over F.
(1) A linear representation of G is any homomorphism from G into GL(V). The
degree of the representation is the dimension of V.
(2) Letn € Z*. A matrix representation of G is any homomorphism from G into
GL,(F).
(3) A linear or matrix representation is Jaithful if it is injective.
(4) The group ring of G over F is the set of all formal sums of the fofm

Zagg, a, € F

geG

with componentwise addition and multiplication (ag)(8h) = (apB) (gh) (where
« and g are multiplied in ¥ and gh is the product in G) extended to sums via
the distributive law (cf. Section 7.2).

Unless we are specifically discussing permutation representations the term “repre-
sentation” will always mean “linear representation.” When we wish to emphasize the
|l'. eld F we shall say F-representation, or representation of G on V over F.

Cot "u’j Recall that if V is a finite dimensional vector space of dimension n, then by fixing
ﬂ basis of V we obtain an isomorphism GL(V) = GL,(F). In this way any linear
representation of G on a finite dimensional Vector Space gives a matrix representation
and vice versa. For the most part our linear representations will be of finite degree and we
shall pass freely between linear representations and matrix representations (specifying a
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basis when we wish to give an explicit correspondence between the two). Furthermore,
given a linear Iepresentation ¢ : G — GL(V) of finite degree, a corresponding matrix
fepresentation provides numerical invariants (such as the determinant of @(g) for g ¢
G) which are independent of the choice of basis giving the isomorphism between

GL(V) and GL,(F). The exploitation of such invariants will be fundamenty] to our
development.

Before giving examples of Tepresentations we recaj] the group ring FG in greater
detail (group rings were introduced in Section 7.2, and Some notation and examples

were discussed in that section). Suppose the elements of G are 8182, ..., g,. Each
element of FG is of the form

2T an e
k=1 ij
8i&i=g
where addition and multiplication of the coefficients @; and g;

is performed in . Note
that by definition of multiplication,

FGisa commutative ring if and only if G is an abelign group.

The group G appears in FG (identifying 8 with 1g;) and the field F appears in
. Under these identifications

ﬂ(Za,-g,-) = Z(,Ba,)g,-, for ;11] BeF.
i=1 i=1

FG (identifying B with Bg;. where &1 is the identity of G)

In this way

perations in ¥ G are similar to those inthe F -algebra F [x] (although

F(x]is infinjte dimensional over F). In some works F@ ig denoted by F[G], although
the latter notatjon is currently Jess prevalent.

The formal sum displayed y of writing the function from ¢ to £ which takes the

value o; on the group element g;, This same “formality” wag used in the construction of free modules
(see Theorem & in Section 1 0.3).
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'Examples
(1) If G = (g) is cyclic of order n € Z7, then the elements of FG are of the form

n—1

i
>
i=0

The map F[x] — F(g) which sends x* to g for all k > 0 extends by F -linearity to
a surjective ring homomorphism with kernel equal to the ideal generated by x — 1.
Thus

F(g) = FIxl/(x" — ).

This is an isomorphism of F-algebras, i.e., is a ring isomorphism which is F-linear,

(2) Under the notation of the preceding example let r = 1 + g+ g2 +--- +g"" ! sor
is a nonzero element of F(g). Note thatrg = g + g> +---+g"" ' + 1 = r, hence
r(l — g) = 0. Thus the ring F(g) contains zero divisors (provided n > 1). More
generally, if G is any group of order > 1, then for any nonidentity element g € G,
F{g)isasubring of FG, so FG also contains zero divisors.

(3) Let G = Sz and F = Q. The elements r = 5(12) — 7(123) and s = —4(123) +
12(1 3 2) are typical members of QQS3. Their sum and product are seen to be

r+s=5(12)~-11(123)+12(132)
rs = —20(23) +28(1 32) + 60(1 3) — 84

(recall that products (compositions) of permutations are computed from right to left).
An explicit example of a sum and product of two elements in the group ring QDg
appears in Section 7.2.

Before giving specific examples of representations we discuss the correspondence
between representations of G and FG-modules (after which we can simultaneously give
examples of both). This discussion closely parallels the treatment of F[x]-modules in
Section 10.1.

Suppose first that ¢ : G — GL(V) is a representation of G on the vector space V
over Fi As above, write G = {g|, ..., gy}, so foreachi € {1, ..., n}, ¢(g;) is a linear
transformation from V to itself. Make V into an ¥ G-module by defining the action of
aring element on an element of V as follows:

(Zaigi) CY = Zaiqo(g,-)(v), for all Zaigi e FG, veV,
i=1 i=1

i=1

We verify a special case of axiom 2(b) of a module (see Section 10.1) which shows
precisely where the fact that ¢ is a group homomorphism is needed:

(&igj)-v=rop(gig)H) (by definition of the action)
= (@(gi) o (g (v) (since ¢ is a group homomorphism)
= @(g)(p(g) () (by definition of a composition of linear
transformations)
=g (g-v) (by definition of the action).
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This argument extends by linearity to arbitrary elements of F G to prove that axiom 2(b)
of amodule holds in general. Itis an exercise to check that the remaining module axioms
hold.

Note that F is a subring of F G a
the same as the action of the ri
extends the F action on V.

nd the action of the field element o on a vector is
ng element a1 on a vector Le., the FG-module action

3 Loy

map from V to V, denoted by ¢(g), defined by
@) =g-v
where g - v is the given action of the ring element g on the element v of V. Since the

elements of F commute with cach g € G it follows by the axioms for a module that for
allv, w e V and al] «, B € F we have

forallv e v,

P& v+ fw) = g - (av + Bu)
=8 (av) + g (Bw)
=a(g-v)+ (g - w)
= a9()(V) + By(g)(w),
that is, for each & € G, ¢(g) is a linear transformation. Furthermore, it follows by
axiom 2(b) of a module that

(88 (V) = ((g:) 0 p(g;))(v)

(this is essentially the calculation above with the steps reversed). This proves that @ is
a group homomorphism (in particular, p(¢=1) = ()1, 5o every element of G maps
to a nonsingular linear transformation, i.e., G — GL(V)).

This discussion shows there is a bijection between ¥ G-modules and pairs (V, p):

l V an FG—module] <~ [ and

V' a vector space over F }
$:G— GL(V)a representation

Giving a representation ¢ 1 G — GL(V) on a vector space V over F is therefore

equivalent to giving an FG-module V. Under this correspondence we shall say that
the module V affords the representation ¢ of G.

representation @, then a subspace U of V is called G
forall g € G and all 4 e U (ie,
follows easily that

-invariant or G-stable if guelU
ifo(g)m) € U for all g € G and all » celU) It

the F G-submodules of V are precisely the G-stable subspaces of V .
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