CHAPTER 18

Representation Theory
and Character Theory

18.1 LINEAR ACTIONS AND MODULES OVER GROUP RINGS

For the remainder of the book the groups we consider will be finite groups, unless
explicitly mentioned otherwise. Throughout this section F is a field and G is a finite
group. We first introduce the basic terminology. Recall that if V is a vector space
over F,then GL(V) is the group of nonsingular linear transformations from V to itself
(under composition), and if n € Z*, then GL,(F) is the group of invertible n X n
matrices with entries from F (under matrix muitiplication).

Definition. Let G be a finite group, let F be a field and let V be a vector space over F.
(1) A linear representation of G is any homomorphism from G into GL(V). The
degree of the representation is the dimension of V.
(2) Let n € Z*. A matrix representation of G is any homomorphism from G into
GL.(F).

(4) The group ring of G over F is the set of all formal sums of the form

Zafgg, o, € F

geG

with componentwise addition and muitiplication (ag)(8h) = (af)(gh) (where
a and B are muliiplied in F and gh is the product in G) extended to sums via
the distributive law (cf. Section 7.2).

Unless we are specifically discussing permutation representations the term “repre-
sentation” will always mean “linear representation.” When we wish to emphasize the
1% eld F we shall say F-representation, or representation of G on V over F.
CW"M Recall that if V is a finite dimensional vector space of dimension #, then by fixing
ot [l basis of V we obtain an isomorphism GL(V) = GL,(F). In this way any linear
‘Jﬁ, representation of G on a finite dimensional Vector space gives a matrix representation
M-lr% and vice versa. For the most part our linear representations will be of finite degree and we
— /¢ shall pass freely between linear representations and matrix representations (specifying a
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element of FG is of the form

Zaigi + Zﬂi&’ = Z(O!i + Bi)g;

i=] i=] i=]

(Zaigi) (Z,Bigi) = Z ( Z Ofiﬂj)gk
i=1 i=] k=1 i,

&i gj’=gk

where addition and multiplication of the coefficients o;; and B; is performed in F. Note

that by definition of multiplication,

FG is a commutative ring if and only

The group G appears
FG (identifying 8 with Bg

if G is an abelian group.
in FG (identifying g; with 1 &) and the field F appears in

1, Where g, is the identity of G). Under these identifications

.B(Z%’gi) = Z(ﬁ%‘)&',
i=1 i=1

forallg ¢ F.
In this way

In particular, Vi

, FGisa ion equal to |G|. The elements of
F commute with all elements of F G,i.e., Fisin the center of FG. When we wish to

emphasize the latter two properties we shall say that FGisan F -algebra (in general, an
F-algebrais a ring R which contains F in iis center, so R is both a ring and an F-vector
Space).

Note that the operations in FG are similar to those in the F-algebra F [x] (although
F[x]is infinite dimensional over F’). In some works F G is denoted by F[G], although
the latter notation is currenily less prevalent.

IThe formal sum displayed above is 2 way of writing the function from G to F which takes the

value o; on the &roup element g;. This same “formality” was uged in the construction of free modules
(see Theorem 6 in Section 10.3).
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'Examples
(1) If G = (g) is cyclic of order = € Z*, then the elemenis of FG are of the form

n—1 .
Zaig'.
i=0

The map F[x] — F(g) which sends x* to g* for all k > 0 exiends by F-linearity to
a surjective ring homomorphism with kernel equal to the ideal generated by x" — 1.
Thus

F(g)=Flxl/&" - 1).

This is an isomorphism of F-algebras, i.e., is a ring isomorphism which is F-linear.

(2) Under the notation of the preceding example let r = 14+ g+ g%+ --- + g" l,sor
is a nonzero element of F(g). Note thatrg = g + g%+ --- + g" ! + 1 = r, hence
r(1 — g) = 0. Thus the ring F(g ) contains zero divisors (provided » > 1). More
generally, if G is any group of order > 1, then for any nonidentity element g€G,
F({g) is a subring of FG, so FG also contains zero divisors.

(3) Let G = S3 and F = Q. The elements r = 5(12) — 7(123)and s = —4(123) +
12(132) are typical members of QS3. Their sum and product are seen io be

r+s=512)-111023)+12(132)
rs=—-20(23)+28(132)+60(13)—84

(recall that products (compositions) of permutations are computed from right to ieft).
An explicit example of a sum and product of two elements in the group ring QDg
appears in Section 7.2.

Before giving specific examples of representations we discuss the correspondence
between representations of G and F G-modules (after which we can simultaneously give
examples of both). This discussion closely parallels the treatment of F[x]-modules in
Section 10.1.

Suppose first that ¢ : G — GL(V) is a representation of G on the vector space "7
over F{ As above, write G = {g,, ..., gn},soforeachi € {1,...,n}, o(g) is a linear
transformation from V to itself. Make V into an F G-module by defining the action of
aring element on an element of V as follows:

n n n
(Za;gi) = Za,-go(gi)(v), for all Za,-g,- e FG, veV.
i=1 i=1

i=1

We verify a special case of axiom 2(b) of a module (see Section 10.1) which shows
precisely where the fact that ¢ is a group homomorphism is needed:

(8:8j) - v=9(gig;)(v) (by definition of the action)
= (p(g) o p(g)) (W) (since ¢ is a group homomorphism)
= @(gi ) (@(g;)(v)) (by definition of a composition of linear
transformations) -
=g (g v) (by definition of the action).
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This argument exiends by linearity o arbitrary elements of FG {0 prove that axiom 2(b)

of amodule holds in genera]. Itis an exercise to check that the femaining moduje axioms
hold.

Note that F js 5 subring of FG apd the action of the field element ¢ on a vector jg
the same as the action of the Ting element o 0n a vector i.e., the FG-module action
extends the F action onV.

Suppose now that Conversely we are givenan F G-module V. We obiain an assocj-
ated vecior space over F and Tepresentation of G a5 follows. Since v isan F G-moduje,
it is an F-module, Le., it is a vector SPace over F. Also, for each g € G we obtain a
map from V to V, denoted by 9(g), defined by

)W) =g.y forally ¢ v,

P(&) (v + w) = 8 - (av + Bu)
=& (@) +g. (Bw)
=a(g-v)+B(g - w)
= 20(@)®) + Bo(g) (w),

that is, for each 8 €G, (g isa linear transformatiop, Furthermore, it follows by
axiom 2(b) of a module that

?(8ig/)(v) = (p(g:) o ?2(g/)(v)

V a vector Space over F
{ V an FG—module} — { and }
©:G—> GL(V)a representation

Giving a epresentation ¢ : G _y GL(V)ona Vector space V over f is therefore
equivalent to giving an FG-module V. Under this coirespondence we shall say that
the module v affords the Tepresentation ¢ of G,

Recall from Section 10.1 that if a Vector space M is made into ap Flx]-module
via the linear transformation 7 » then the F [x]-submodules of M are precisely the 7-
stable subspaces of M. In the current situation if v jg an FG-module affording the
Tepresentation g, thep 5 subspace U of V jg called G-invarign; or G-stable if g-uely

for all 8€Gandally ¢ U (e, ifgo(g)(u) € U for alj g8€Gandally ¢ U) It
follows easily that

the F G-submoduyies of V are precisely the G-stapj, subspaces of v,
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Let V be a 1-dimensional vector space over F and make V into an FG-module by
letting gv = v forall g € G and v € V. This module affords the representation
¢ : G — GL(V) defined by ¢(g) = I = the identity linear transformation, for all
g € G. The corresponding matrix representation (with respect to any basis of V) is
the homomorphism of G into GL;(F) which sends every group element to the 1 x 1
identity matrix. We shall henceforth refer to this as the #rivial representation of G.
The trivial representation has degree 1 and if |G| > 1, it is not faithful.
Let V = FG and consider this ring as a left module over itself. Then V affords a
representation of G of degree equal to |G|. If we take the elements of G as a basis of
V., then each g € G permutes these basis elements under the left regular permutation
representation:

88 = 88i-
With respect to this basis of V the matrix of the group element g has a 1 in row ¢
and column j if gg; = gi, and has 0’s in all other positions. This (linear or matrix)
representation is called the regular representation of G. Note that each nonidentity
element of G induces a nonidentity permutation on the basis of V so the regular
representation is always faithful.
Letn € Z1,1let G = S, and let V be an n-dimensional vector space over F with basis
e1,e2,...,eq. Let S, act on V by defining foreach o € S,

o e =es(), i<i=<n

i.e., o acts by permuting the subscripts of the basis elements. This provides an (injec-
tive) homomorphism of S, into GL(V) (i.e., a faithful representation of S, of degree
n), hence makes V into an F S,-module. As in the preceding example, the matrix of
o with respect to the basis ey, ..., e, hasa 1 intow i and column j if 6 - ¢; = ¢; (and
has 0 in all other entries). Thus ¢ has a 1 in row i and column j if 6 (j) = i.

For an example of the ring action, consider the action of F'S3 on the 3-dimensional
vector space over F with basis e1, e2, e3. Let o be the transposition (1 2), let = be the
3-cycle (123) and et r = 20 — 37 € FS3. Then

r-(aei + Bex +ve3) = 2aes 1) + Bes2) + Ves(3)) — (e + Ber) + ver3))
= 2(aez + Pey + ye3) — 3(aez + Besz +yey)
= (28 —3y)e1 —aez + 2y — 3P)es.

Ify : H — GL(V) is any representaiion of H and ¢ : G — H is any group
homomorphism, then the composition ¥ o ¢ is a representation of G. For example,
let V be the FS,-module of dimension »n described in the preceding example. If
7 : G — S, is any permutation representation of G, the composition of 7 with the
representation above gives a linear representation of G. In other words, V becomes
an FG-module under the action

8 " € = ex(g)(i), for all 8 € G.

Note that the regular representation, (2), is just the special case of this where » = |G|
and & is the left regular permutation representation of G.

Any homomorphism of G into the multiplicative group F* = GL1(F) is a degree
1 (matrix) representation. For example, suppose G = {g) = Z, is the cyclic group
of order n and ¢ is a fixed n' root of 1 in F. Let g' — ¢!, foralli € Z. This
representation of ( g ) is a faithful representation if and only if ¢ is a primitive n' root
of 1.
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