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Electric Field and Plasma Flow: What Drives What?

Vytenis M. Vasyliūnas
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Abstract. The MHD approximation connects the plasma bulk flow velocity
and the electric field, but it does not say whether one of them can be
considered as causing or producing the other, and if so, which one. This
question is often viewed as one having no unambiguous answer and possibly
no physical meaning. However, a definite answer can be obtained by solving
the basic equations with appropriate initial values, with the result that, for
the commonly considered case where the Alfvén speed is small compared to
the speed of light, (1) a given plasma bulk flow produces an electric field, (2)
a given electric field does not produce a plasma bulk flow. The general result
can also be derived as a simple consequence of conserving the total (plasma
plus electromagnetic field) linear momentum.

Introduction

The MHD approximation

cE + V ×B = 0, (1)

widely applied in many situations in plasma physics,
implies a one-to-one relation between the electric field
E and the bulk flow velocity of the plasma V: given
the value of either one, the other must have the cor-
responding value given by (1). By itself, however, the
relation does not say whether either one may be re-
garded as causing or producing the other in a physical
sense — an infrequently raised question that does not
seem to have a generally accepted answer. Often, lan-
guage that presupposes a specific answer is used in pa-
pers casually and uncritically (e.g. “...the electric fields
that give rise to bursty flows...” [Lyons et al., 1999]).
When the question is explicitly asked, a common re-
ply is that there is really no unique, physically mean-
ingful answer: it’s largely semantics, it all depends on
what approach to describing plasmas one has adopted
and what one’s views are in the ongoing controversy
[Parker, 1996, 1997, 2000; Heikkila, 1997; Lui, 2000] on
whether the magnetic field and the plasma flow or the
electric current and the electric field are to be treated
as the primary variables. In this Letter I show that, on
the contrary, the question is not one of semantics nor
of choice of paradigm but can be given a definite and
unambiguous answer from the equations of physics.

Basic Approach

What makes it possible to discuss such questions on
the basis of purely physical rather than philosophical or

semantic arguments is a remarkable property of classical
(non-quantum) physics: all of its governing equations,
except for three, can be written in the evolutionary form

∂Qk/∂t = Fk(Q1, Q2, Q3, ...) (2)

where the Q’s are all the quantities describing the sys-
tem and the F ’s are functions of the Q’s and their spa-
tial derivatives at a given time. The three exceptions
are the divergence equations of the electromagnetic and
gravitational fields,

∇ ·E = 4πρc

∇ ·B = 0 (3)
∇ · g = −4πGρ .

The significance of this formulation (so familiar as to be
hardly ever mentioned explicitly in textbooks; it was im-
pressed on me by my thesis supervisor at M.I.T., Prof.
Stanislaw Olbert) is that all the time derivatives are de-
termined, solely and completely, by values at the present
time. Furthermore, any initial conditions whatsoever,
provided only that they satisfy the divergence equations
(3), can be imagined at an instant of time (but only at
that instant), and the equations will then determine
what happens at all other times. The question in the
title of this Letter can thus be answered by means of
two thought experiments: at the initial instant assume,
in one case an electric field but no plasma bulk flow, in
the other a flow but no electric field, and use the equa-
tions to determine the subsequent evolution of field and
flow in both cases (needless to say, the exact equations
must be used and not the MHD approximation).
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Mathematical Development

Consider a system that initially is homogeneous with
uniform magnetic field B and plasma with mass density
ρ and electron concentration n. Spatial homogeneity
is assumed not just for simplicity but also to ensure
that the looked-for role of the electric field in produc-
ing the flow is not swamped by the potentially much
larger effects of stresses from gradients. To exclude any
influence from boundary conditions, the initially homo-
geneous system is taken to extend out to a distance R2

from the origin, but we will be interested only in the re-
gion out to R1 < R2 and in the time interval 0 ≤ t < τ ,
where

τ = (R2 −R1)/c (4)

so that no physical effects from the boundary have had
time to reach the region of interest. Since light trav-
els a distance of 2πλe in one plasma oscillation period,
where λe is the electron inertial length (collisionless skin
depth), and since R1 and R2 − R1 must be very large
compared to λe for MHD to be applicable at all, the
time interval τ is very long compared to the period of
plasma oscillations, which turns out to be amply ade-
quate for our purpose.

Assume as initial conditions at time t = 0 the current
density J = 0, E = E0, and V = V0, where E0 and
V0 are perpendicular to B but otherwise arbitrary and
do not satisfy equation (1). The equations governing
the evolution of the system are (in Gaussian units and
standard notation)

∂B/∂t = −∇× cE (5)

∂E/∂t = −4πJ +∇× cB (6)

∂J/∂t = (ne2/m)(E+V×B/c−J×B/nec)+ · · · (7)

∂V/∂t = J×B/ρc + · · · (8)

(plus continuity equations which turn out to be un-
necessary in the present case). Equations (5) and (6)
are Maxwell’s equations and hence exact. Equation
(7) is the generalized Ohm’s law (see e.g. Rossi and
Olbert [1970] and (8) the momentum equation for a
two-component plasma of electrons (mass m) and ions
(mass M , ρ = nM); both are exact except for neglect-
ing terms of order m/M and writing + · · · for all the
spatial-derivative terms (pressure gradients, etc.).

Because of the assumed initial spatial homogeneity,
at t = 0 all the spatial derivatives vanish, including
∇ × E and ∇ × B. The time derivatives are then the
same at all points within the region under consideration,
and spatial homogeneity is therefore preserved at later
times as well. This implies that∇×E and∇×B remain
zero, hence by (5) B remains constant. (For the same
reason of spatial homogeneity, densities do not change
and the continuity equations are not needed.) To solve
for E, J, and V, which are now functions of time only,

differentiate (7), use (6) and (8) to eliminate the time
derivatives of E and V, and obtain an equation for J
alone:

d2J/dt2+ωp
2[J+(VA

2/c2)J⊥]+dJ/dt×eB/mc = 0 (9)

where ωp is the (electron) plasma frequency and VA the
Alfvén speed; note that

ωp
2VA

2/c2 = ΩiΩe (10)

with Ωi, Ωe the ion and electron gyrofrequencies. Equa-
tion (9) is to be solved subject to the initial values at
t = 0

J = 0 (11)
dJ/dt = (ωp

2/4π)(E0 + V0 ×B/c)

The component of (9) along B is

d2J‖/dt2 + ωp
2J‖ = 0 (12)

whose solution subject to (11) is J‖ = 0. The solution
for the perpendicular components can be obtained by
standard Fourier analysis techniques, yielding with the
initial conditions (11)

J = J1(sinω+t + sin ω−t) + J1 × b(cos ω+t− cosω−t)
(13)

where

J1 ≡ [ωp
2/4π(ω+ + ω−)](E0 + V0 ×B/c) , (14)

b is the unit vector along B, and the characteristic fre-
quencies ω+ and ω− are given by

ω± = (ωp
2 + ΩiΩe + Ω2

e/4)1/2 ± Ωe/2 . (15)

Not surprisingly, these are the frequencies given by the
dispersion relation for waves in cold plasmas in the limit
of infinite wavelength (see e.g. Stix [1962]).

Given the solution for J, solutions for E and V are
obtained by integrating (6) and (8), respectively, with
the results

E = Em − 4π

∫
dtJ (16)

V = Vm − (B/ρc)×
∫

dtJ (17)

where∫
dtJ = −J1[(cosω+t)/ω+ + (cos ω−t)/ω−]

+ J1 × b[(sinω+t)/ω+ − (sinω−t)/ω−] (18)

is the oscillating (zero mean) function obtained by inte-
grating (13), and Em, Vm are the steady mean values
resulting from choosing the constants of integration to
give the assumed initial values:

Em = [(VA
2/c2)E0 −V0 ×B/c]/(1 + VA

2/c2) (19)

Vm = [V0 +(VA
2/c2)cE0×B/B2]/(1+VA

2/c2) . (20)

In most applications within space plasma physics,
VA

2/c2 � 1.
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Results

We have now obtained the solutions describing the
behavior of a locally homogeneous plasma after arbi-
trary initial values of the perpendicular electric field
and plasma bulk flow, not satisfying the MHD approx-
imation (1), have been imposed. J, E, and V all un-
dergo oscillations at frequencies just above the plasma
frequency; in addition, E and V assume mean values
related to the initial values by (19) and (20). It is easily
verified that the mean values satisfy the MHD approx-
imation (1), as expected.

Consider, as special cases, the two extremes:
(1) Initially only an electric field E0 is imposed and

no flow: the resulting mean values are

Em = (VA
2/c2)E0/(1 + VA

2/c2) (21)

Vm = (VA
2/c2)(cE0 ×B/B2)/(1 + VA

2/c2) (22)

The mean electric field has been reduced to a small
fraction VA

2/c2 of the initial value (the instantaneous
field oscillates between the initial value and, very nearly,
its negative), and only a correspondingly small plasma
flow has been created.

(2) Initially only a plasma bulk flow V0 is imposed
and no electric field: the resulting mean values are

Em = −(V0 ×B/c)/(1 + VA
2/c2) (23)

Vm = V0/(1 + VA
2/c2) (24)

The mean flow has remained at nearly its initial value,
and a mean electric field equal to −V ×B/c has been
created (the instantaneous field oscillates between its
initial value of zero and twice its mean value).

Alternative Derivation From Conservation of
Momentum

A much simpler derivation of the mean values, which,
moreover, makes their physical meaning more apparent,
becomes possible if we assume that, whatever the ini-
tial values of E and V, their final mean values satisfy
the MHD approximation (1). The linear momentum
density is

G = ρV + E×B/4πc (25)

where the first term represents the momentum of
plasma bulk flow and the second that of the electromag-
netic field. When E and V are related by the MHD ap-
proximation (1), the momentum density can be rewrit-
ten in two equivalent forms

G = ρV(1 + VA
2/c2)

= (E×B/4πc)(1 + c2/VA
2) . (26)

In the present case, spatial homogeneity implies that
linear momentum is conserved locally, and therefore the
initial value (given by (25) with the initial E0 and V0)

must equal the final value (given by either form of (26)
with the mean Em and Vm), which yields expressions
for Em and Vm identical with (19) and (20).

Whatever linear momentum has been imposed on
the plasma initially must, in the final MHD regime, be
shared between electromagnetic field and plasma bulk
flow in the ratio given by (26) as

(E×B/4πc)/ρV = VA
2/c2 . (27)

The main result of this Letter, that under the usual
conditions of VA

2/c2 � 1 an electric field does not pro-
duce a significant plasma bulk flow whereas a flow does
produce an electric field, is thus simply a consequence
of momentum conservation plus the fact that the linear
momentum in the electromagnetic field is very small
compared to that in the plasma bulk flow.

Discussion

Although the MHD relation between the electric field
and the plasma bulk flow treats both quantities on an
equal footing, they can be distinguished, as shown in
this Letter, by positing an initial state with only one
of the two present and then using the basic equations
to follow the subsequent development of both. This
method, based strictly on physics with no reference to
any philosophical or choice-of-paradigm considerations,
unambiguosly identifies one of the two as producing the
other. As long as the inertia of the plasma is dominated
by the rest mass of the plasma particles and not by the
relativistic energy-equivalent mass of the magnetic field
(that is the significance of the relation VA

2/c2 � 1),
flows produce electric fields, but electric fields do not
produce flows, in a precisely defined sense: if one starts
with plasma flow and no electric field, the flow contin-
ues and the electric field appears (with the mean value
required by MHD) on a time scale defined essentially by
the plasma frequency, whereas if one starts with an elec-
tric field and no plasma flow, the electric field simply
dissolves into plasma waves (with nearly zero mean) and
no appreciable flow appears. The reason for this is sim-
ple: bulk flow carries linear momentum and thus can
be produced only by adding linear momentum to the
plasma, which is done by stresses acting on the plasma;
adding the momentum density of the electromagnetic
field, the sole contribution from the mere presence of the
electric field, has a negligible effect if VA

2/c2 � 1. (If
the electric field is externally applied and maintained,
e.g. by a voltage on capacitor plates immersed in the
plasma, the flow obviously has been produced not by
the electric field itself but by the Lorentz force of the
currents that had to be supplied in order to offset the
polarization of the plasma and maintain the plate volt-
age.)

One implication of the results reported here is that
several expressions commonly used in discussions of the
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magnetosphere, e.g. “...electric fields give rise to bursty
flows...” or “...magnetospheric convection is driven by
an electric field penetrating in from the solar wind...”
(some problems with the latter have been discussed by
Parker [1996]) are inappropriate and distort the under-
lying physics. Admittedly, such expressions are often
used superfluously, in contexts where only the associa-
tion and not the causal connection of the electric field
and the plasma flow is meant, and may therefore be
judged inaccurate but harmless. Where the question
of what drives what arises, however, one must be pre-
cise. The electric fields are consequences of the flows;
to explain the flows themselves, stress imbalances and
resultant accelerations must be looked for.
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