Elements of area in R3
Jason T. Miller

“We are not moved by things, but by the views we take of them.”
Epictitus

Given a region S of a surface in R® parameterized by
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yields the area of a parallelogram spanned by the vector fields f, and f, at a point on the
surface with coordinates (u,v). There must be a better way to consider this argument.

we find its area using the integral

The integrand

Taking the dot product as a Riemannian metric on TIR?, we compute:
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Elements of area in R® 2

In other words, the matrix of the metric g;; is

(g gk

in (u,v) coordinates, where - is just the usual dot product in R3. We also have
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and
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This is no coincidence — just the chain rule, really, and a bit of linear algebra: at a particular
point, a second-order covariant tensor field is just a bilinear form on tangent vectors. Given
a change of basis matrix | : V. - W, and the matrix of a bilinear form G in the basis W, we
have

G=J'G] so det(g;j) =det(JTGJ) = det(G) det>(]).

For the dot product, the matrix G is the identity, so this is just det?(]).



