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order differential terms, which leaves a finite and interesting result
(4.40)

Had we summed moments about axes parallel to y or x, we would have obtained ex-
actly analogous results

Txy = Tyx

Tee ™ Tox Ty Ty (4.41)

There is no differential angular-momentum equation. Application of the integral theo-
rem to a differential element gives the result, well known to students of stress analy-
sis, that the shear stresses are symmetric: 7; = 7;. This is the only result of this sec-
tion.” There is no differential equation to remember, which leaves room in your brain
for the next topic, the differential energy equation.

We are now so used to this type of derivation that we can race through the energy equa-
tion at a bewildering pace. The appropriate integral relation for the fixed control vol-
ume of Fig. 4.1 is

Q—Ws—Wu=i<f epd°V>+f (e+£>p(V-n)dA (3.63)
Jat \Jcv Ccs p

where W, = 0 because there can be no infinitesimal shaft protruding into the control
volume. By analogy with Eq. (4.20), the right-hand side becomes, for this tiny element,

0-W,= [i (po) + = (pug) + = (pg) + L (pwz)] drdyd: (442)
ot 0x ay 0z

where { = e + p/p. When we use the continuity equation by analogy with Eq. (4.21),
this becomes
0-W,= (p % +V- Vp) dx dy dz (4.43)

To evaluate Q, we neglect radiation and consider only heat conduction through the sides
of the element. The heat flow by conduction follows Fourier’s law from Chap. 1

q=—kVT (1.29a)
where k is the coefficient of thermal conductivity of the fluid. Figure 4.6 shows the

heat flow passing through the x faces, the y and z heat flows being omitted for clarity.
We can list these six heat-flux terms:

Faces Inlet heat flux Outlet heat flux
J
x gy dy dz [qx + oy @ dXJ dy dz
J
y qy dx dz [qy + E (gy) dy] dx dz
J
z q. dx dy [qz + d_z (q,) dz] dx dy

SWe are neglecting the possibility of a finite couple being applied to the element by some powerful ex-
ternal force field. See, e.g., Ref. 6, p. 217.
SThis section may be omitted without loss of continuity.
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Fig. 4.6 Elemental cartesian control
volume showing heat-flow and
viscous-work-rate terms in the x
direction.
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By adding the inlet terms and subtracting the outlet terms, we obtain the net heat
added to the element

. J J
0= —[ —(q) +—(q) + 9 (qz)] dxdydz=—-V-qdxdydz (444)
0x ay Jz

As expected, the heat flux is proportional to the element volume. Introducing Fourier’s
law from Eq. (1.29), we have

Q=V-(kVT) dxdydz (4.45)

The rate of work done by viscous stresses equals the product of the stress compo-
nent, its corresponding velocity component, and the area of the element face. Figure
4.6 shows the work rate on the left x face is

WoLr = w, dy dz where w, = —(ut,, + V7, + W7, (4.46)

(where the subscript LF stands for left face) and a slightly different work on the right
face due to the gradient in w,. These work fluxes could be tabulated in exactly the same
manner as the heat fluxes in the previous table, with w, replacing g,, etc. After outlet
terms are subtracted from inlet terms, the net viscous-work rate becomes

. Jd J
w, = _[d_ (uty, + v, + wr) + a— (uty + v7, + W1,
X ’ y ; ’ ’

+ di (ur, +vr, + WTZ:):| dx dy dz
Z

We now substitute Eqgs. (4.45) and (4.47) into Eq. (4.43) to obtain one form of the dif-
ferential energy equation

PNV Vp=V RV + V- (Vo) wheree =i+ 1V + g2 (448)

A more useful form is obtained if we split up the viscous-work term

V-(Ver)=V-(Ver) + @ (4.49)
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where @ is short for the viscous-dissipation function.” For a newtonian incompressible
viscous fluid, this function has the form

2 2 2 2
@ = pf 2 L4\ 4 o L) g} 4 (Lu oy
0x ay 0z ox  dy

2 2
4 (L JuNT, (U ow (4.50)
ay 0z 0z 0x

Since all terms are quadratic, viscous dissipation is always positive, so that a viscous
flow always tends to lose its available energy due to dissipation, in accordance with
the second law of thermodynamics.

Now substitute Eq. (4.49) into Eq. (4.48), using the linear-momentum equation (4.32)
to eliminate V + 7;;. This will cause the kinetic and potential energies to cancel, leav-
ing a more customary form of the general differential energy equation

/)% +p(V-V)=V- (VD) + (@31
G

This equation is valid for a newtonian fluid under very general conditions of unsteady,
compressible, viscous, heat-conducting flow, except that it neglects radiation heat trans-
fer and internal sources of heat that might occur during a chemical or nuclear reaction.

Equation (4.51) is too difficult to analyze except on a digital computer [1]. It is cus-
tomary to make the following approximations:

dii = ¢, dT Cy W k, p = const 4.52)

Equation (4.51) then takes the simpler form

dT

= =kV’T+ ® 4.53
& (4.53)

pcv

which involves temperature T as the sole primary variable plus velocity as a secondary
variable through the total time-derivative operator

dr _oT T 9T T

U+ v

= 4.54
dt ot ax ay Y 0z (4>4)

A great many interesting solutions to Eq. (4.53) are known for various flow conditions,
and extended treatments are given in advanced books on viscous flow [4, 5] and books
on heat transfer [7, 8].

One well-known special case of Eq. (4.53) occurs when the fluid is at rest or has
negligible velocity, where the dissipation @ and convective terms become negligible

pc, %—f -k VT (4.55)

This is called the heat-conduction equation in applied mathematics and is valid for
solids and fluids at rest. The solution to Eq. (4.55) for various conditions is a large part
of courses and books on heat transfer.

This completes the derivation of the basic differential equations of fluid motion.

TFor further details, see, e.g., Ref. 5, p. 72.



