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1 Introduction

I investigate the claim that energy doesn’t flow in wires, but in the space around
them. The claim comes from focusing on the Poynting vector and by assum-
ing that the conducting wire of a circuit has no resistance. However, it turns
out that there is energy ”flowing” in the wire in all cases, including when the
resistivity vanishes. The argument comes from thermodynamics. The only as-
sumptions involved are that the first law of thermodynamics hold (conservation
of energy), and that there is a uniform current density in the wire (holds when
thermoelectric effects are neglected, and a DC is used, or low frequency AC. The
claim would still hold if those effects would be taken into account, but the math
would be more tedious to deal with.). The uniform J. condition is reasonable,
and arises for a linear charge distribution at the wire’s surface, which is a good
approximation to what happens when a power source is connected to a circuit.

1.1 Poynting vector route

The Poynting vector S = %E x B is the energy flux coming from the EM fields.
From now and on, I will consider the region consisting of the interior of the wire.
The continuity equation applied to the EM energy density u yields
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So that in steady state, V - S = —J, - E. We can rewrite E using Ohm'’s law
Jo. = —oV[i where 1 is the electrochemical potential. By doing so, one finds
that B .
V-5 =—pllI (1)

From this expression, it is evident that the Poynting vector does not catch
the whole energy involved in the system, because in steady state, the divergence
of the (total) energy flux must vanish. Anyway, let’s ignore this for now. In the
wire, E points along the wire, because E is directly proportional to J_;, and it
is constant everywhere in the wire. B on the other hand has direction 6 (the
unit vector in cylindrical coordinates), and goes like r because it is proportional
to the current enclosed by a cross section of radius r divided by the perimeter



of this cross section. Mathematically, B = ’2‘%2; 6. This means the magnetic

field vanishes at the center of the wire, and so does the Poynting vector. The
direction of the Poynting vector is radially inward the wire, i.e. it points towards
the center of the wire (—#), and its magnitude goes like 7, i.e. its magnitude
decreases from the surface of the wire towards its center. In the case of zero
resistivity (or infinite conductivity), the electric field vanishes inside the wire,
and so does the Poynting vector. From all of this, people have claimed that the
energy does not flow in the wire (and in particular that it doesn’t flow in the
direction of the wire, and that it flows outside the wire, since Poynting vector
does not vanish there). It turns out this is not correct, as will be showned in
the next section.

1.2 Thermodynamics route

In the wire (as a thermodynamics system out of equilibrium due to the current,
and as we will see, thermal gradients), dU = TdS + udN. U is the internal
energy and takes into account all forms of energy in the wire. S here is the
entropy (to distinguish from the Poynting vector, I would use |§ | to denote the
magnitude of the Poynting vector, if needs to occur.) This means that

Ju =TJs+ e (2)

when it comes to fluxes (energies per unit surface area per unit time). Ji is
the internal energy flux, a quantity defined at every single point in the wire.
J;w is the entropy flux. In steady state, V - J_{] = 0, i.e. the heat that enters
any part of the wire must leave it (no accumulation of energy anywhere). Then,
using Js = JZQ /T where JZ; is the heat flux, given by Fourier’s law (the analog
of Ohm’s law for the thermal flux rather than electric flux): JZQ = —xVT, one
finds the heat equation

V- (=hVT) = pl T[> =0 (3)

which is the equation temperature must satisfy in the material (regardless of
the boundary conditions that we choose to apply). This equation tells us that
in any volume element, the quantity of energy generated by Joule heat must be
conducted away via heat conduction, in steady state. It also shows that as long
as there is a Joule heat, VT # 0, i.e. there must exist a thermal gradient at
every single point in the wire. It is impossible to keep the wire in isothermal
conditions as long as Joule heat is present. It turns out that the thermal gradient
must points inward the wire, in the radial direction. Furthermore, due to the
symmetry, it must vanish at the center of the wire.

Looking back at equations 1 and 3, we can see that V- (—xkVT)+ V- S = 0,
from which we can infer that S = kVT. As a checkup, we see that these
expressions share the same direction, and magnitude (in particular they vanish
at the center of the wire). Their magnitude is maximum at the boundaries of
the wire. To complete the proof, see appendix A. Solving the heat equation



in the particular case of the temperature kept fixed at the surface of the wire
72 72
yields T(r) = 27«2 (R? —#2) 4 Ty, which implies VT = — 2777,

1.2.1 Limit when p — 0

In the limit of zero resistivity (perfect conductor), Joule heat goes away, as
well as the Poynting vector (which remains non zero outside the wire). In that
case, there is no thermal gradient in the wire. But there is still the ﬁfe term
appearing in the expression of the internal energy flux. In fact, the internal
energy flux is precisely equal to that quantity. Therefore, energy ”flows” inside
the wire, even though the conductor is perfect (no electrical resistance).

2 Expression of the energy flux in the wire

We have all the elements to write down the expression for the energy flux in the
wire, for both the case of finite and vanishing resistivity. In the case of finite p,
the condition that the current density is uniform implies that & = g + p12, in
other words that the potential drop is linear along the wire. We can go a little
bit further, Vi = j, 2 = —p|J.|2

Referring back to eq 2, we finally reach
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This expression can be used to sketch the total energy flux in the wire. In the
case of zero resistivity, only a constant Z component survives. As the resistivity
is increased, there appear a radial component whose magnitude increases the
further we are from the center, as well as a decrease/increase in the longitudinal
component, which reflects the potential drop due to the resistitivity.

3 (Interesting) questions that arise

e What happens in the case of a superconductor? Is that any different
than in the case of a perfect conductor? Intuitive answer: probably not
different, unfortunately. If thermoelectricity is taken into account, we
would still fall back to the same case since the Seebeck coefficient of a SC
vanishes.

e How does the analysis change when thermoelectricity is taken into ac-
count? Short answer: do the math, start by modifying the Ohm and
Fourier’s laws to their generalization in thermoelectricity.

e What fraction of the energy is conducted in the wire compared to the
one outside the wire, in function of the value of the resistivity? Good
question...



e And all cross questions, i.e. considering thermoelectricity, etc.

e What power must the power source provide to keep the steady state?
Answer: the question of the power is a bit subtle. First, the Poynting
vector makes up for the charge distribution on the surface of the wire.
These charges create the uniform current density in the wire, which is
associated to an energy flux in the wire, and along the wire, everywhere
inside the wire. When the resistivity is non zero, a radial thermal flux
appears in the wire, as it must evacuate the generated Joule heat. It
turns out that this outgoing thermal flux is equal to minus the Poynting
vector. It is not the total energy density flux of the system, unlike what
is sometimes claimed.

The power source has to spend energy to create the electrical current in
the wire, even in the case of vanishing resistivity. In that particular case,
the energy required to set up the current is equal to fV ﬁfe dl (where Tz is
constant through the wire, which is not the case of non zero resistivity.).
This means that, if we compare two similar wires, but one has a current
and the other doesn’t have it, the one with the current has more energy
inside it than the other. When the current stops, and if the wire has a
null resistivity, the power may be radiated away (although I am not sure,
but that would make sense). In any case, that extra energy has to go
somewhere, and cannot be dissipated in the wire if it has no resistivity.

To maintain the steady state, the power source must give up what is lost
as Joule heat, i.e. the heat that is conducted away.

e How to reconciliate the 2 views? For example, what generates Joule heat
(if the question makes any sense)? From the Poynting vector way, it
seems like it’s the divergence of that vector that does it. However, from
the thermodynamics point of view, it’s the divergence of the ﬁfe terms
that does it. These divergences are certainly equal, but the energy fluxes
are not equal, they do not point in the same direction. Joule heat comes
from the interaction of the electrons with the phonons, I think. In any
case, p must not be null for it to exist.

A Proof that the Poynting vector is equal to the
radially conducted heat

I use cylindrical coordinates (r, 6, z). S = |§ |#. The divergence in cylindrical
coordinate yields V - A = %% + ... Sothat V-§=1(S, +795). But we
know that S, o r, so that S, = ar, and so V - S = constant, and that makes
sense, since we know that it should give Joule heat (which does not depend on
7). If we look at the expression for VI obtained by solving the heat equation,
from it we can conclude that kKVT o r, which makes sense, as this quantity is
equal to the Poynting vector which we know is proportional to r.



There is a condition that must hold if § = kVT:
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and indeed, it holds (do the math if you want.). This fully justifies the equality.



