22.6

Note that 1 < I < m is most likely a typo for 1 <1 < m. Moreover, the below attempt assumes
f[_l 1 k%(u)du < co. To obtain a sensible estimation, h — 0 as n — oo.

1. By linearity of the expectation, identical distribution of z1, ..., z,, the law of the unconscious
statistician and the change of variables u = (¢ — x)/h, where x = x; for some ¢ in {1,...,n},

E[f, (1) = ;;E (5] 1)

1 t—x
=E |-k 2
(5] .
1 t—x
= —k flz)dz 3
L (50 @ @
1
- / L i) £t — huyhdu (@)
11k
_ / k(u) £(t — hu)du. (5)
[_171]
The integration occurs over [—1, 1] since supp(k) = [—1, 1] and f is a probability density function.

Its support is unspecified, but since it integrates to 1 over R, it is bounded.

2. Let m > 1 be fixed. From f € C"™, it follows that

m ()
Flt—hu) =" ! U(t) (—hu)’ + o((hu)™). (6)
=0 ’

o(g(y)) is a set (or function) such that f(y) € o(g(y)) (or f(y) = o(g(y))) satisfies
lim,,_,,, f(y)/g(y) = 0 for yo denoting a real number, a complex number or :I:oﬂ In (6)), yo = 0.

From and linearity of integration,
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The 1 <1 < m terms are
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Finally, the [ = m term is
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Regarding the integral with the remainder, note that o((hu)™) does not specify the remainder;
it only specifies that the remainder converges to 0 faster than (hu)™ as hu — 0. h is the free

Lo(gn) is a set (or sequence) ... such that limy,—co fn/gn = 0.



variable while u is the bounded variable; hu — 0 means h — 0. Thus the remainder satisfies
o((hu)™) = u™o(h™) = o(h™). If the remainder is only a function of h, the estimation of the
integral is straightforward. If it also depends on u, then the integral can be estimated if the

remainder, viewed as a sequence of functions, converges uniformly to qﬂ Then
/ kE(u)o((hu)™)du = / kE(u)o(h™)du = o(h™).
[—1,1] [—1,1]
To summarize,
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E(w)u"™du + o(h™),
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and thus
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E[f, (6] — () 4 /[_1 | M o) = AR o),

where A = A(t) = M% Jio1 g B(uw)u™du < oo.
3. By independence and the change of variables in part 2,
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since

* f[—1,1] k2 (w)uldu < f[_m] k%(u)du < oo,

(15)

2If a sequence of functions g, converges uniformly to a function g over some compact interval I where g, and

g are integrable, then
lim [ gn(u)du = /g(u)du.
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mse[f (t)] = Var[f,,(t)] + Bias®[f,(1)] (25)
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5. From the approximation obtained in part 4, it follows that mse[f, (¢)], for ¢ fixed, has an
absolute minimum since mse[f,(t)] — oo for h — 0 and h — oo (h is strictly positive). The
absolute minimum is found by differentiating mse[f,(¢)] and solving for h when the derivative

equals 0, that is
h= <f<t) Jior k2<u>du> e

1
A22mn (31)

6. Plugging in the value of h obtained in part 5 into the approximation obtained in part 4, one
finds that
mse[f,,(t)] oc n =2/ GmHD), (32)

since both 1/nh and h?™ reduce to n=2"/m+1) for b oc =1/ m+1),



