
Stern Gerlach Experiments 

Consider now an electron beam, initially prepared by a SG device in the state 

x  which is sent through another SG device with its z-direction  aligned such 

that the eigenvalues 
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Here also I have included the apparatus (SG device and/or human 
experimenter plus background environment/rest of the world etc.) to be 

lumped into one single vector called the environment e  which has a very 

large number of Degrees of freedom – so can easily change state. 

The system evolves according to the Schrödinger equation, each electron 
interacting with the SG analyzer to produce a state for each electron given by:
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The density operator for the system is given by definition 

 ( ) ( ) ( )S E t t t      (0.4) 

  

 

 
1

( ) ( )( )
2

S E t e e e e     

 
           
 

  (0.5) 



If we restrict our alignment of the SG analyzer to be in either the z or x 
direction then  
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Because we are interested only in what the two state system is doing, and not 
the environment, one only needs to know the reduced density matrix of the 
two state system, with the environment states traced out. For this purpose, so 
that we can form a trace, we need to choose environment basis vectors which 
are orthogonal. Any normalised orthogonal basis will do since the trace is 
basis independent. 

The diagram below shows one such choice of the basis vectors:  
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The reduced density operator matrix of the two state system is given by 
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Now using the expressions (1.8), (1.17),(1.19) and the fact that outer product 

terms like    define entries into a matrix like 
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then we have that 
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Now if 
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Where  
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and if we set  
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This is the value “expected” since half of the time the electrons will come out 
as aligned in the positive z-direction and half of the time they will come out 
aligned in the negative z-direction.  

But if we now rotate our SG device into the x-direction and recalculate our 
expectation value we find that with 
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Theoretical models[ ] show that decoherence can acts extremely rapidly and 
hence that in this model decoherence occurs rapidly when 
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