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Abstract Development and testing of angle independent absorbing boundary conditions 
(ABCs) can be improved by simulating waves incident on the ABC at a single angle. By using 
one-dimensional Finite Difference Time Domain (FDTD) as the lattice side edge condition, 
the creation and numerical propagation of a two dimensional plane wave with arbitrary inci- 
dent angle is possible. The application and extent of usefulness of the method are examined 
and extensions to increase the range of usefulness are introduced. 

I. INTRODUCTION 

Until recently, the use of the FDTD method for numerical solutions of electromagnetic scattering 
problems was severely hampered by the poor performance of absorbing boundary conditions used 
to prevent reflections of EM waves at the lattice edges. With the advent of the Berenger Perfectly 
Matched Layer[l], this problem has been significantly reduced and the computational efficiency of 
FDTD problems has been significantly improved. 

Understandably, this has created considerable interest in improving and optimizing the PML and 
angle-independent ABCs as a whole. But this effort has been impaired by the fact that commonly 
used excitations, such as point or line sources, generate waves incident on the ABC at all angles. 
This complicates the analysis of the performance of the ABC and impairs design optimization. The 
problem is ameliorated by introducing plane wave sources incident on the ABC at a single angle. 
With such an excitation, the performance of the ABC is clearly defined. However, because of the 
difficulty in dealing with propagation on the lattice edge ,the creating and propagating such a wave 
is difficult. 

For a two-dimensional FDTD simulation using the standard Yee cell formulation[2], the update of 
a given spatial grid point requires data from the four adjacent grid points. Clearly this creates a 
problem at the lattice edges. Typically, in scattering simulations, a Mur total/scattered field region 
separation avoids the need to calculate incident waves on the edges[3]. However, to test ABCs, the 
incident wave must be a uniform plane wave without deformations along the edge. ABCs cannot be 
used at these edges since they fail for plane waves propagating at steep grazing angles. Furthermore, 
the values on the edges must not be specified analytically because the numerical values of the fields 
inside the discretized ABC under test are not known. 

II. INTEGRATION OF ONE-DIMENSIONAL EDGE FDTD 
WITH A TWO-DIMENSIONAL GRID 

For the following discussion, consider a two-dimensional grid on which a boundary value FDTD 
simulation will be run. The "front" of the grid is the source boundary value while the ABC to be 
tested is positioned at the "back". What is desired is the create a plane wave with a phase front 
at an angle 6 with respect to the front wall. For this discussion a transverse electric (TE) wave is 
considered. The x directions is front to back and the y direction is left to right as shown in Figure 
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Instead of ABCs at the "left" and "right" edges, 1-D FDTD is used. The update of each spatial 
point on these edges will require data from only the grid points preceding and succeeding it. At 
each time step, information from this 1-D FDTD is passed to the larger 2-D FDTD to update 
spatial points adjacent to the left and right edges. If the wave is normally incident on the ABC, 
the formulation of the plane wave is quite simple. In this case, Hx is zero and both Ez and Hy are 
uniform left to right. Therefore, no information is obtained from the transverse difference and the 
calculations along each grid line running front to back reduces to as a 1-D FDTD algorithm. To 
illustrate this, consider the time harmonic Maxwell's curl equations for TE waves in lossless media: 
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These have the familiar (forward propagating) solutions: 
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It is clear that for normal incidence, (0 = 0), this becomes a TEM wave with no y dependence. 
Equations (la) and (2c) become unnecessary and the 1-D FDTD and the 2-D FDTD calculations 
are identical. 

The situation is more complicated when 8 is nonzero. Now Hx is nonzero and the 1-D wave is no 
longer identical to the 2-D wave. In order for the 1-D FDTD simulation to supply the correct data 
to the 2-D grid, the 1-D wave must propagate with a velocity that keeps pace with the 2-D wave. 
This velocity is simply the phase velocity of the 2-D wave in the x direction, i.e. V\o = v0/cos6, 
where v0 is the velocity of the 2-D wave in the direction 8. This is analogous to taking a slice along 
the right (or left) edge of the grid, of an infinite 2-D plane wave. Clearly this "slice" must travel 
along the edge with greater velocity than the the wave traveling an angle 8. Since the velocity, VID 

of this wave is given as VID = jr-, we can write Eq. (2) for the 1-D wave at y = 0 as: 

EtlD=E0e-''""" (3) 
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The solution in Eq.(3) does not satisfy Maxwell's curl equations. This problem can be addressed 
by modifying Ampere's Law. By taking the partial derivative of Eq.(2c) at y = 0 one obtains: 

dy r) 

which, using Eq.(2b) becomes 

dHx _ {i_- cos: 

dy 

2 a\ dHy 
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Thus, 
dHy     dHx _     1    dHy 

dx       dy      cos2 6 dx 

Now Eq.(l), for the 1-D wave will become: 

dE. 

d. 

1    dH, 

= JuiiHyiD (4) 

yip 

Having described the changes to Maxwell's equations needed to integrate the 1-D FDTD into the 
2-D grid, it is worthwhile examining the discretization of the modified ID curl equations. 

III. DISCRETIZATION OF MODIFIED EQUATIONS AND STABILITY CONSIDERATIONS 

Through a straight forward discretization process[4], the discretized 1-D modified Maxwell's curl 
equations for lossless media become; 

E*+*=En+-Sfli(ff
B

,-+i - ff".--*) (s) 

where n is the time index, i is the space index and R = v0At/Ax is the Courant Number, and the 
vector component designations has been suppressed. Note that the velocity of the modified 1-D 
wave is vm = ^j as is apparent in the discretized wave equation based on Eq.(5). 

Of particular importance is the Courant Number, R. Stability analysis indicates that for a FDTD 
simulation to be stable R < 1. For Equation (5), a new Courant number RID — ~^§ must be used 
instead. Since Rn> < 1, the usefulness of this method is limited to smaller angles. For example, let 
Rg be the Courant Number of the 2-D FDTD simulation. If Rg is chosen to be 0.5, then the largest 
angle that may be used is 60°. Clearly larger angles may be used if Rg is chosen to be smaller. 
However, since Rg is also a measure of how fast the wave moves through the grid, choosing it too 
small increases computational expense for the entire 2-D grid. 

IV. LARGE ANGLE SOLUTIONS 

For applicability with large propagation angles without decreasing Rg, changes must be made to 
the method. This is done by adjusting the Courant Number of the 1-D FDTD edge simulation. 
A smaller Courant number R[D = v0At'/Axcos6 may be chosen such that R'1D < RID- Since 
Ax remains the same, two simulations using R'lD and RID would be spatially similar at the same 
physical time t, whenever n'At' = nAt for some different number of new time steps. The the 
stability condition is now R'1D < 1 and thus Q may be increased. 

Some care must be exercised in order to insure that the correct data is being passed to the 2-D 
grid. Let m = At/At'. If m is an integer(= n'/n), then the mth

 iteration of the 1-D FDTD is used 
to update the 2-D interior of the grid. If m is not an integer, then the correct value of Ez on the 
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edge of the lattice must be interpolated with respect to time from two or more iterations of the 1-D 
FDTD and then supplied to the 2-D grid. 

The interpolation process is quite straight forward, with emphasis given to insuring the correct 
timing. Assume the 1-D FDTD simulation has a time sample interval of At' and the 2-D simulation 
has a time sample interval of At. To meet the above criteria, At' < At. In order to insure that 
interpolation, and not extrapolation, is being performed, the 1-D simulation must be performed 
until n'At' > nAt. The number of previous time values that must be stored in order to perform 
the interpolation is equal to the order of interpolation desired. Increasing the order will increase 
accuracy, but since previous values must be stored for every point on the 1-D grid, the order 
should be kept as low as possible. 

Once the values needed for interpolation have been identified and calculated, any standard inter- 
polation algorithm, such as Lagrange Interpolation, can be used. After the interpolated edge Ez 

values have been calculated, they can then be supplied to the 2-D grid. The edge Hy values need 
not be interpolated. 

V. FDTD SIMULATION RESULTS 

Several experiments were performed using the methods described above using a variety of parame- 
ters. Excellent results were obtained for angles ranging from 0 to 85 degrees. The general method of 
each experiment was the same. A Gaussian pulse plane wave was created along the initial boundary 
at x = 0 with time variation corresponding to various propagation angles and with various values 
of Rg. In each of these experiments, the plane wave encounters a PML ABC at the back of the 
grid. The ABC in question is from [5] with 8 PML layers and conductivity profile cr; = <j;{i/Sf-

7■ 
Figure 2a shows a 50x50 view sampled from a 200x200 grid. The propagation angle is 45° degrees 
and the Courant Number Rg is 0.5. Note that the wave propagates without edge distortion. Figure 
2b is the same wave 200 time steps later. The wave has encountered the ABC and no reflection is 
visible, even in the lattice corner, where the 1-D FDTD accurately extends the 2-D ABC interaction 
calculation to the edge. In the scattered field view 2c, which is at the same time step as 2b, the 
magnification has been increased by 5 orders of magnitude and the incident field has been removed. 
The features to note are that the scattered wave satisfies Snell's law and that the scattered wave is 
uniform along the 45° angle, i.e., the introduction of the 1-D FDTD on the right edge of the grid 
has not introduced any additional reflection artifacts. Figure 3a is once again a 50x50 view of a 
200x200 grid. Here the Gaussian pulse plane wave is incident on the ABC at 70°. Once again Rg 

is 0.5 but now Rs' = 0.25/ cos 6. The 1-D wave is traveling at one-half the velocity needed to keep 
pace with the 2-D wave, so only every second time sample is passed to the 2-D grid. Figure 3b is 
the same wave 150 time steps later. As with 45° wave, the interaction with the ABC has produced 
no visible reflection. Once again it may be noticed that the scattered wave, Figure 3c, obeys Snell's 
law and is uniform along the Snell angle. Clearly the visible reflection is due solely to the plane 
wave interacting with the ABC, which is the desired information. 

VI. CONCLUSIONS 

A method for testing angle-independent ABCs has been described. By using a one-dimensional 
FDTD simulation on the left and right edges of a two-dimensional grid, a plane wave incident on 
a ABC at the back edge of the grid at a single angle can be created and propagated. This method 
will greatly simplify the analysis of angle-independent ABC performance. The method has been 
tested using a Gaussian pulse plane wave with a variety of parameters and has been shown to give 
excellent results. Finally, since all of the desired information is found in the 1-D simulations, it 
can be concluded that the analysis of angle-independent ABCs may be carried out using only 1-D 
simulations. 
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Figure 1 
Geometry of grid. 
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Figure 2a Gaussian pulse plane wave generated at x = 0 incident on the ABC at 45°. After 500 
time steps, the 1-D FDTD simulation at y = 200 aligns perfectly with the 2-D FDTD 
simulation throughout the grid. ABC exists for 192 < x < 199. 

Figure 2b Gaussian pulse of Figure 2a, 200 time steps later: total field. The pulse has encountered 
the ABC, and is almost completely absorbed. 

Figure 2c Scattered field at the same time of Figure 2b showing the residual reflection of the ABC. 
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Figure 3a Gaussian pulse plane wave generated at x = 0 incident on the ABC at 70°. After 375 
time steps, the 1-D FDTD simulation at y = 200 aligns perfectly with the 2-D FDTD 
simulation throughout the grid. ABC exists for 192 < x < 199. 

Figure 3b Gaussian pulse of Figure 3a 150 time steps later: total field.The pulse has encountered 
the ABC and is almost completely absorbed. 

Figure 3c Scattered field at the same time of Figure 3b showing the residual reflection of the ABC. 
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