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Abstract

We consider a Randall-Sundrum model in which the Standard

Model fermions and gauge bosons correspond to bulk fields. We

show how the observed charged fermion masses and CKM mixings

can be explained, without introducing hierarchical Yukawa couplings.

We then study the impact on the mass scales associated with non-

renormalizable operators responsible for proton decay, neutrino masses,

and flavor changing neutral currents. Although mass scales as high

as 1011 − 1012 GeV are in principle possible, dimensionless couplings

of order 10−8 are still needed to adequately suppress proton decay.

Large neutrino mixings seem to require new physics beyond the Stan-

dard Model.
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1 Introduction

Higher dimensional models of space-time with non-factorizable geometries
have attracted much interest recently, especially because they may provide a
solution to the gauge hierarchy problem. In the Randall-Sundrum approach
[1] (see also [2]) the warp factor Ω = e−πkR generates an exponential hierarchy
between the effective fundamental mass scales on the two branes located at
the orbifold fixed points in the extra dimension. If the brane separation is
kR ≃ 11, the scale on one brane is of TeV-size, while the scale on the other
brane is of order MPl ∼ 1019 GeV. The AdS curvature k and the 5d Planck
mass M5 are both of order MPl.

In the original proposal [1] the SM fields are all assumed to reside on
the TeV-brane and only gravity propagates in the extra dimension. This
setup is very economical in solving the hierarchy problem. However, one
would naively expect that non-renormalizable operators in the 4d effective
theory, now only TeV-scale suppressed, would lead to rapid proton decay, and
unacceptably large neutrino masses and flavor changing neutral currents.

In the following we will explore to what extent this problem can be solved
by moving the SM fermions away from the TeV-bane, without invoking ad
hoc symmetries such as baryon and/or lepton number. The basic idea, al-
ready explored in ref. [3], exploits the fact that closer to the Planck-brane
the effective fundamental scale is much larger than a TeV. However, the
fermions cannot be moved arbitrarily far from the TeV-brane, in case their
overlap with the Higgs field becomes too small to provide sufficiently large
fermion masses. The Higgs field must reside near the TeV-brane if the model
is expected to solve the hierarchy problem [4–6] (supersymmetry may help to
avoid this constraint). The SM gauge bosons are assumed to be bulk fields
to maintain gauge invariance. Taking into account constraints from the elec-
troweak precision data [3–9], especially the W and Z boson mass ratio [5],
the Kaluza Klein (KK) excitations of bulk gauge bosons and fermions are of
order 10 TeV. Thus, some tuning of parameters is required to reproduce the
measured W and Z boson masses.

Having the SM fermions in the bulk can also help explain the fermion
mass hierarchy [3, 10, 11]. Heavy fermions are localized near the TeV-brane,
where their overlap with Higgs fields is large, while the light fermions reside
closer to the Planck-brane. We will demonstrate that this mechanism also
generates acceptable quark mixings without invoking any flavor symmetry.
The generation of fermion masses and quark mixings along these lines has
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already been explored in the case of flat extra dimensions [10, 11]. There,
some additional physics has to be assumed in order to localize the fermions
or provide an appropriate profile for the Higgs in the extra dimension. In
the scenario considered here, these are automatically generated by the non-
factorizable geometry.

In the following we present a set of “order one parameters”, describing the
localization of the bulk fermions, which successfully reproduces the measured
fermion masses and quark mixings. We also study the impact on the mass
scales associated with non-renormalizable operators responsible for proton
decay, flavor changing neutral currents, and neutrino masses. Finally, we
briefly discuss the issue of neutrino mixings.

2 5d fermions

We consider the non-factorizable metric [1]

ds2 = e−2σ(y)ηµνdxµdxν + dy2, (2.1)

where σ(y) = k|y|. The 4-dimensional metric is ηµν = diag(−1, 1, 1, 1), k
is the AdS curvature, and y denotes the fifth coordinate. The equation of
motion for a fermion in curved space-time reads

EM
a γa(∂M + ωM)Ψ + mΨΨ = 0, (2.2)

where EM
a is the fünfbein, γa are the Dirac matrices in flat space, and ωM

is the spin connection. The index M refers to objects in 5d curved space,
the index a to those in tangent space. Under the Z2 orbifold symmetry
the fermions behave as Ψ(−y)± = ±γ5Ψ(y)±. Thus Ψ̄±Ψ± is odd and the
Dirac mass term, which is also odd, can be parametrized as mΨ = cσ′. Here
and in the following prime denotes differentiations with respect to the fifth
coordinate. On the other hand, Ψ̄±Ψ∓ is even. Using the metric (2.1) one
obtains for the left- and right-handed components of the Dirac spinor [3, 12]

[e2σ∂µ∂
µ + ∂2

5 − σ′∂5 − M2]e−2σΨL,R = 0, (2.3)

where M2 = c(c ± 1)k2 ∓ cσ′′ and ΨL,R = ±γ5ΨL,R.
Decomposing the 5d fields as

Ψ(xµ, y) =
1√
2πR

∞
∑

n=0

Ψ(n)(xµ)fn(y), (2.4)
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one ends up with the zero mode wave function [3, 12]

f0 =
e(2−c)σ

N0

, (2.5)

where

N2
0 =

e2πkR(1/2−c) − 1

2πkR(1/2 − c)
. (2.6)

Because of the orbifold symmetry, the zero mode of Ψ+ (Ψ−) is a left-handed
(right-handed) Weyl spinor. For c > 1/2 (c < 1/2) the fermion is localized
near the boundary at y = 0 (y = πR), i.e. at the Planck- (TeV-) brane.

3 Masses for bulk quarks and leptons

The zero modes of leptons and quarks acquire masses from their coupling to
the Higgs field

∫

d4x

∫

dy
√
−gλ

(5)
ij HΨ̄i+Ψj− ≡

∫

d4x mijΨ̄
(0)
iR Ψ

(0)
jL + · · · , (3.7)

where λ
(5)
ij are the 5d Yukawa couplings. The 4d Dirac masses are given by

mij =

∫ πR

−πR

dy

2πR
λ

(5)
ij e−4σH(y)f0i+(y)f0j−(y). (3.8)

We assume that the Higgs profile has an exponential form which peaks at
the TeV-brane

H(y) = H0e
ak(|y|−πR). (3.9)

Using the known mass of the W-boson we can fix one parameter, which we
take to be the amplitude H0, in terms of the 5d weak gauge coupling g(5).
The parameter a determines the width of the profile. If the profile satisfies
the equations of motion we have a = 4 [13], but we will also consider other
values.

Various constraints on the scenario with bulk gauge and fermion fields
have been discussed in the literature [3–7, 9]. With bulk gauge fields for
instance, the SM relationship between the gauge couplings and masses of the
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L e µ τ
m [MeV] 0.5 106 1777
(A): cL 0.681 0.591 0.537
(B): cL 0.834 0.664 0.567

(A): M4 [GeV] 4.02 109 1.98 107 1.21 106

Table 1: Lepton mass parameters in case of (A) left-right symmetry (cL = cE)
and (B) delocalized right-handed fermions (cE = 1/2).

Z and W bosons gets modified. The electroweak precision data then requires
the lowest KK excitation of the gauge bosons to be heavier than about 10
TeV [5]. This bound is independent of the localization of the fermions in the
extra dimension.

Furthermore, the KK excitations of the SM gauge bosons contribute to the
electroweak precision observables. Their effect is relatively small if the SM
fermions are localized towards the Planck-brane (c > 1/2). In this case KK
masses around 1 TeV are sufficient for the corrections from the gauge boson
excitations to be compatible with the experimental bounds [3, 6]. Therefore,
the above constraint derived from the W and Z boson mass ratio is very
important in this range of parameters. In the following we will assume that
the mass of the first KK gauge boson is m

(G)
1 = 10 TeV. The corresponding

masses of the fermions are then in the range 10 to 13 TeV, for 0 < c < 1.
Let us begin with the charged leptons. In the absence of Dirac masses for

the neutrinos we can start with diagonal Yukawa couplings for the leptons.
To avoid a new hierarchy in the 5d couplings, we assume λ

(5)
ii = g(5) (but

will also discuss other possibilities below). We take k = M5 = MPl, where

MPl = 2.44×1018 GeV is the reduced Planck mass. From m
(G)
1 = 10 TeV we

determine the brane separation kR = 10.83 [8], and taking a = 4 we obtain
H0 = 0.396k/g(5).

The lepton masses depend on the 5d mass parameters of the left- and
right-handed fermions, cL and cE respectively, which enter (3.8). The ex-
perimentally known lepton masses do not fix these six c-parameters unam-
biguously. Hence we will concentrate on two special scenarios: (A) left-right
symmetry, i.e. cL = cE ; (B) delocalized right-handed fermions, i.e. cE = 1/2.
In table 1 we give the numerical values of the lepton mass parameters which
reproduce the physical masses in both cases. The larger the 5d Dirac mass,
i.e. c parameter of the fermion becomes, the greater is its localization at
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Figure 1: Localization of the electron (c = 0.681), tau (c = 0.537) and right-
handed top quark (c = 0.1) zero modes in the fifth dimension. The Higgs
profile H is given for a = 4 in units of k3/2 and magnified by a factor of 10.

the Planck-brane. Its overlap with the Higgs profile at the TeV-brane is
consequently less, which is reflected in a smaller 4d fermion mass after elec-
troweak symmetry breaking. Our geometrical picture beautifully generates
the charged lepton mass hierarchy by employing c-parameters of order unity.
In figure 1 we present the wave functions of the electron and tau zero modes
in the extra dimension, together with the Higgs profile. One observes that
the electron, and to a lesser extent the tau, are localized near the Planck-
brane. The factor of e−

3

2
σ compensates for the non-trivial measure induced

by the AdS geometry.
The SM-like term (3.8) is not the sole contribution to the masses of the

zero modes. The KK states of the fermions couple to the zero modes and
induce corrections to (3.8) via tree-level and loop diagrams. We require
these additional contributions to be small compared to (3.8). The tree-level
contribution, arising due to a mixing of the zero modes and the excited
fermion states, is of order [9]

δm
(0)
f ∼ λ0iλijλ0j

v3

MiMj

, (3.10)

where Mi,j are the masses of the excited fermions, v = 174 GeV is the 4d
Higgs vev and λij are the Yukawa-type couplings between the fermion modes
and the Higgs in the 4d effective theory. The corrections to fermion masses
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from a loop involving a Higgs and KK fermion states has been estimated in
[7],

δm
(1)
f ∼ 1

16π2
λ0iλijλ0jv. (3.11)

Since the KK fermions are localized closer to the TeV-brane than the zero
modes, their couplings to the Higgs boson is enhanced. Therefore, it is not
clear that the fermion mass corrections involving these states are small, even
though these states are rather heavy. Requiring that the corrections (3.10)
and (3.11) are small compared to the fermion mass (3.7) provides additional
constraints on the c-parameter of the fermions.

For the parameter sets (A) and (B) of table 1 we find that the additional

contributions are indeed small, δm
(0)
f /mf ∼ 0.03 and δm

(1)
f /mf ∼ 0.08, irre-

spective of the lepton flavor. In this case the fermion masses can be reliably
calculated from eq. (3.8).

If we increase the 5d Yukawa coupling, the fermions can be moved closer
towards the Planck-brane. However, at the same time the fermion mass
corrections (3.10) and (3.11) increase exponentially. We find that fine-tuning
of the fermion mass contributions is only avoided for λ(5)/g(5) <∼ 5. For the
muon, for instance, this means that cL < 0.614 (cL < 0.707) for the left-right
symmetric (cE = 1/2) case. In this parameter range the constraints arising
from the anomalous muon magnetic moment are satisfied as well [7].

In the case of quarks we have to take into account the additional com-
plication of flavor mixing.3 The mixing provides additional constraints on
the 5d quark mass parameters. There are nine c-parameters in the quark
sector, three each for the left-handed doublets cQ, the right-handed u-quarks
cU , and the right-handed d-quarks cD. The physical quantities we want to
reproduce are the six quark masses and, in the absence of CP-violation, the
three CKM mixing angles.

Rather then keeping the Yukawa couplings strictly equal to one, as in
the case of leptons, we allow them to vary by a factor of two, i.e. 1/2 <

|λ(5)
ij |/g(5) < 2, which certainly introduces no new hierarchies. One parameter

3For sake of simplicity we ignore CP-violation here. It is readily included by introducing

complex Yukawa couplings for the quarks.
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set which reproduces the physical quark masses and mixings [14] is given by

cQ1 = 0.72 cD1 = 0.57 cU1 = 0.63

cQ2 = 0.60 cD2 = 0.57 cU2 = 0.30

cQ3 = 0.35 cD3 = 0.60 cU3 = 0.10, (3.12)

λ
(5)
D

g(5)
=





0.50 −2.00 −2.00
1.48 −0.90 2.00
0.52 −0.50 0.70



 ,
λ

(5)
U

g(5)
=





0.80 −1.90 −2.00
1.23 1.20 −1.04
1.85 1.66 −0.80



 .

Using these numbers we obtain

mu = 2.9 MeV, mc = 1.3 GeV,

md = 3.8 MeV, mb = 4.4 GeV,

ms = 78 MeV, mt = 165 GeV,

|VCKM| =





0.9744 0.2248 0.0045
0.2248 0.9736 0.0392
0.0045 0.0392 0.9992



 . (3.13)

We have checked that for this parameter set the additional mass contributions
from eqs. (3.10) and (3.11) are sub-leading. Like in the case of leptons an
overall enhancement of the 5d Yukawa couplings by a factor of about five is
tolerable. For larger Yukawa couplings, however, (3.10) and (3.11) become
important.

Strictly speaking the quark masses given above are running masses at the
cutoff scale of the effective 4d theory, which is in the TeV range. However, the
effects of evolving the masses to the low energy regime could be absorbed
in a redefinition of the 5d Yukawa mass matrices. The localization of the
right-handed top-quark at the TeV-brane is shown in figure 1.

Note that the parameter set (3.12) is not uniquely determined by the
experimental constraints. But it demonstrates that bulk fermions in the
RS model can naturally explain with order one parameters not only the
huge fermion mass hierarchy but also the quark mixings. Note that in the
RS model a profile for fermions in the extra dimension is automatically in-
duced by the non-factorizable geometry. As a result, this scenario is quite
constrained, as will become clear in the discussion of the impact on non-
renormalizable operators in the next section.
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4 Dimension six operators and proton decay

We consider the following generic four-fermion operators which are relevant
for proton decay and K − K̄ mixing

∫

d4x

∫

dy
√−g

1

M3
5

Ψ̄iΨjΨ̄kΨl ≡
∫

d4x
1

M2
4

Ψ̄
(0)
i Ψ

(0)
j Ψ̄

(0)
k Ψ

(0)
l (4.14)

where the effective 4d mass scale is given by

1

M2
4

=
1

2π2kR2M3
5

1

N0(ci)N0(cj)N0(ck)N0(cl)

e(4−ci−cj−ck−cl)πkR − 1

4 − ci − cj − ck − cl
. (4.15)

Let us first consider 4-fermion operators built from a single lepton flavor.
For the left-right symmetric case and M5 = k the results for M4 are given
in the last line of table 1. One observes the rough relationship M4 ∝ 1/m.

Furthermore we have M4 ∝ λ(5)/g(5) and M4 ∝ M
3/2
5 .

M4 also depends on the width of the Higgs profile. The further the Higgs
profile stretches out to the Planck brane (the smaller a gets), the closer the
fermions can be moved to the Planck-brane, and the larger the suppression
scale becomes. However, a has to be considerably smaller than four in order
to change the given results. For instance, with a = 2, the effective M4

is increased only by a factor of 2.5. Raising the suppression scale of a 4-
fermion operator involving only electrons, for example, to 1016 GeV requires
c = 0.92, which can be achieved only for a ≤ 1.4. In this case the Higgs
profile compensates the warp factor to a large extent. However, it is unclear
if such a profile can be derived from a more fundamental scheme.

Let us now discuss some specific operators. Constraints from K − K̄
mixing require that the dimension-six operator (ds̄)2/M2

4 is suppressed by
M4 >∼ 106 GeV. Using the c-parameters of (3.12) we obtain M4 = 5.5 × 106

GeV, in agreement with the constraint. This conclusion was also reached
in ref. [3]. However, our estimate for the suppression scale is more realistic,
since we have taken into account the quark mixings.

Concerning proton decay the most stringent constraints arise from the
four-fermion operators OL=Q1Q1Q2L3 (M4 > 1015) GeV and OR=U c

1U
c
2D

c
1E

c
3

(M4 > 1012) GeV [15]. Using the c-parameters of (3.12) and case (B)
of table 1 we obtain for these operators the effective suppression scales
M4(OL) = 7.7 × 108 GeV and M4(OL) = 1.7 × 106 GeV, which are sev-
eral orders of magnitude smaller than the experimental limits. If we enlarge
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all the 5d Yukawa coupling by a factor of 5, the fermions can be moved fur-
ther towards the Planck brane while still generating their desired masses. M4

then increases by a factor of 5. Taking M5 = 10k instead of M5 = k would
enlarge M4 by another factor of about 30. If the two factors are combined,
the effective suppression scales can be pushed to M4(OL) = 1.2 × 1011 GeV
and M4(OL) = 2.6 × 108 GeV, which is still four orders of magnitude be-
low the constraint. Larger values of λ(5) and M5 would further increase this
result, but at the price of introducing new hierarchies. The same holds for
a larger variation in the 5d Yukawa couplings. Moreover, for λ(5)/g(5) >∼ 5
the KK fermion contributions to the fermion masses (3.10) and (3.11) can
no longer be ignored.

We conclude that by letting the SM fermions reside in the extra dimension
considerable suppression of the non-renormalizable operators responsible for
proton decay can be achieved. However, the effective suppression scale of
these operators is still too small by at least four orders of magnitude. A
small number of order 10−8 has to multiply the dimension-6 operators to
satisfy the experimental constraints on the proton life time.

5 Dimension five neutrino masses

Majorana masses for left-handed neutrinos are generated by the dimension-
five operator

∫

d4x

∫

dy
√−g

lij
M2

5

H2ΨiLCΨjL ≡
∫

d4x mνijΨ
(0)
iL CΨ

(0)
jL , (5.16)

where lij are some dimensionless couplings constants, C is the charge conju-
gation operator and

mνij =

∫ πR

−πR

dy

2πR

lij
M2

5

e−4σ(y)H2(y)f0i(y)f0j(y). (5.17)

Because of the SU(2) symmetry, the 5d Dirac mass parameters of the left-
handed neutrinos and charged leptons are equal. No new parameters enter
the game. For the left-right symmetric case (A) of table 1, taking M5 = k
and lij = δij , i.e. ignoring neutrino mixing, we obtain

mνe
= 39 keV, mνµ

= 8.8 MeV, mντ
= 150 MeV. (5.18)
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These neutrino masses are well above the experimental limits.
The situation improves if the left-right symmetry is given up, and left-

handed fields are moved closer to the Planck-brane. Let us consider case (B)
where the right-handed fields are not localized at all (cE = 0.5). Then the
5d mass parameters of the left-handed leptons read ce = 0.834, cµ = 0.664
and cτ = 0.567. We then obtain the neutrino masses

mνe
= 2.3 eV, mνµ

= 112 keV, mντ
= 33 MeV. (5.19)

While these neutrino masses may be compatible with collider experiments,
they are problematic for neutrino oscillations and cosmology.

From eq. 5.17 one observes that mν ∝ 1/M2
5 . For cR = 0.5 we also have

mν ∝ 1/(λ(5))2. Assuming M5 = 10k (instead of M5 = k) and λ(5)/g(5) = 5,
we could reduce the neutrino masses by another factor of 2.5×103. However,
the ντ mass is still in the keV region, and another factor of 105 is needed to
bring it down to the range suggested by the atmospheric neutrino oscillation
data. However, with the required large numbers, M5 = 100k, λ(5)/g(5) = 100,
new hierarchies arise in the model, and large corrections to fermions masses
arise from eqs. (3.10) and (3.11). We conclude that some symmetry (e.g.
lepton number) is needed to prevent large dimension five neutrino masses in
the Randall-Sundrum model.

Finally, let us assume that with suitably large values of M5 and λ(5) the
neutrino masses of eq. 5.19 are indeed reduced by a factor of 108. Can the
operator of eq. 5.16 explain the neutrino oscillation data? Including non-
diagonal terms in (5.16) by setting all lij = 1 we obtain the following mass
matrix in the (νe, νµ, ντ ) basis

mν =





2.28 505 8.66 103

505 1.12 105 1.92 106

8.66 103 1.92 106 3.31 107



 10−8 eV. (5.20)

As one might expect from the geometrical picture, the neutrino mass ma-
trix is of nearest neighbor type, similar to those of the quarks. The corre-
sponding mixings are in the few percent range, in conflict with the atmo-
spheric neutrino data. If we relax the constraint on the couplings in (5.16)
to 1/2 < |lij| < 2 the situation improves to some extent. The νe–νµ (νµ–ντ )
mixing angle can become as large as π/5 (π/15). But these values are still
too low to explain the data. Moreover, we were not able to find a parameter
set where both mixings are large at the same time, which seems favored by
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the data. In order to explain the experimental results the field content of
the model most likely has to be extended. The right-handed neutrino is an
obvious choice (see, e.g. [12]), and we will explore this in a future publication.
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