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The corresponding conserved current, calculated from (9.1.16), is 

PL 4, 1 ( '402) -  04,002. 

In this application of Noether's theorem to quantum field theory, j.)-` 
represents the electromagnetic current associated with- the charged par-
ticles. 

9.2 LORENTZ INVARIANCE AND ANGULAR MOMENTUM 

We have just seen that invarinces of the action lead to the existence of 
conserved quantities, and---that the conserved quantities derived from 
invariance under the translations .V—)..Tcm-i- ear are the energy and 
momentum. What are the conserved quantities related to Lorentz in-
variance? 

Lorentz Transformations 

It will be helpful for us to explore how finite Lorentz transformations can 
be built from infinitesimal transformations. We begin with the equation 
defining a finite Lorentz transformation,  

A"„gu„A's = gas . 	 (9.2.1) 

When written in matrix notation, this is ArgA = g, or 

gAg =A -1T.  

Suppose that A has the form* 

A= e A  

with 

gAg= —AT. 

Then A satisfies (9.2.2): 

geAg=egAg= e-A7-=(e_A)T _ (eA) - iT  

(9.2.2) 

(9.2.3) 

(9.2.4) 

(9.2.5) 

*The matrix eA is defined by its power series expansion eA = 1 + 1,"°„ 1(1/nDA". This expan-

sion can be used to prove the equation (9.2.5). 
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Thus it is plausible that any Lorentz transformation A can be represented 
as an exponential exp A with A satisfying (9.2.4). (Moreover, it is true as 
long as A is a proper, orthochronous Lorentz transformation.*) This 
exponential representation is useful because it shows how a finite Lorentz 
transformation A can be formed as the product of many infinitesimal 
Lorentz transformations 

I um [1+ Al - 
At,co 	i* 

In order to study Lorentz transformations, we have only to study the 
"infinitesimal generators" of Lorentz transformations, that is, the matrices 
A that satisfy the simple linear equation  (9.2.4). Let us write (9.2.4) as 
Ag= gAT: 

A ;10,g" = — 

or 

Al".= — 	 (9.2.6) 

There are six linearly independent solutions to (9.2.6): 

0  —1  0 0 
1 	000 

 0 	000 
 0 	0 0 0, 

0 0 —1 0 
00 	00  
10 	00  
00 	00  

AI" 

We name these six matrices 11101, MO2, M03 , M 12, M I3,  M23' For notational 
convenience, we also define Maft  =0 for a =- /3, MOE/3 = — Mik, for a> By 
definition, then, the matrix elements (M,v )m of the infinitesimal generator 
Mo113 are 

(mafi  )'4„= — egfip+4g.p. 
	 (9.2.7) 

*The representation (9.2.3), (9.2.4) can be easily established, as long as the matrix elements of 
A-1 are small enough, by defining A = In A= — (1 —A) — ;(1 —A)2  —  1 (1 —A)2 — • • • . For our 
purposes this is all that is necessary. However, one can extend the representation to all proper 
orthochronous Lorentz transformations by an explicit construction. For this purpose it is best 
to use the correspondence between the proper orthochronous Lorentz group and the group of 
2 X 2 complex matrices with determinant 1, SL(2,C). [See, for example, R. F. Streater and A. 
S. Wightman, PCT, Spin and Stalitics, and All That (Benjamin, New York, 1964).] 
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Transformations of Vectors and Tensors 

We have seen that a finite Lorentz transformation has the form e A  where A 
is a linear combination of the six matrices Map 

A.=-- e 1 /2 "ssl-P, 

Waft — Wfla . 	 (9.2.8) 

One can specify the Lorentz transformation by giving the six independent 
parameters '0%4232, 0°3 , (4 12, 4) 13 , 47 23 . 

A vector VI' transforms under the Lorentz transformation specified by 
wai3  according to -17,c---> ru with 

v p, =[et/zeonrolP „ Fp . 	 (9.2.9) 

The transformation law for a second rank tensor Ps' can be written in the 
same way if we think of the pair of indices (II, y) as one index that takes 16 
values. We simply need new 16 x 16 generating matrices. 

(Taafl) ' — (map) ix +gAmafi)".- 
	 (9.2.10) 

Then 

	

P"' = A PpA PG  T P° = [ e 1 /2 ] p„ TPO. 
	 (9.2.11) 

To verify this formula, note that M has the form C+D, and that exp(C + 
D)= exp(C) exp (D), since CD  =  DC. 

It should be apparent that the transformation law for a tensor of any 
rank can be written in a form like (9.2.11). In the case of a scalar field 
T (x), the corresponding generating matrices  M, are 1 x 1 matrices (i.e., 
numbers) whose value is zero. 

There is another class of fields other than tensors that is used in 
relativistic quantum field theory. These fields are called spinors, and also 
transform according to a law of the form 

ITK 	—>Ifix (X) = 
	

''1441K1-41L(X) ,  

but with another form for the generating matrices 1 -1443 . 

Lorentz Invariance in a General Theory 

Suppose that we are dealing with a relativistic field theory involving 
several fields, s(x), Tv (x), A (X), etc. In order to have a flexible notation, 
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we give each component of each field a new name, ck,(x),  J=  1,2,..., N. 
Then the transformation law for the fields under Lorentz transformations 

(9.2.12) 

has the form 

(7).,(-7)—)0.7(x)— {e 1/2 ''AetficKGT). 
	 (9.2.13) 

The generating matrices NI o  have a block diagonal form, so that 
 =0 unless 0.,(x) and  4K(x)  are two components of the same vector or 

tensor field. 

Application of Noether's Theorem 

If the Lagrangian is a scalar under Lorentz transformations, then Noeth- 
er's theorem tells us that there are six conserved quantities Jo, one for 
each independent parameter 6) 43 . (We take Jo = — J for convenience.) if a 
The corresponding conserved currents Jo "' can be calculated by using 
(9.1.16) and taking e equal to one of the parameters wo = — wfla , with the 
other parameters equal to zero. 

a — 	" 

aE 	a/3 	x 
 

(gas  aE 	k'as 

Thus 

fo •= col/J.0%f' 
a e 	r 

(Mo LKOK (aM)(MŒO'Ax x  +  a (a,o.,) 

ae 
 = { d e 	) a 	) I 

_ xp [ g: -(8.4,J ) a (aa::2:
1) 

 

e  (R0,3 ),KoK 
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Or 

a e  
x 	"— 	"4- 	 (M B) 	 (9.2.14) 0,s 	a T 	x T fi 	13 a 	a  (8,... ,tv) 	a. JK 

The current Jo l" is called the angular momentum current, and the 
conserved tensor Jo = fd3xJo° is called the angular momentum. We 
relate Jo  to the angular momentum x X p of particle mechanics in the 
next section. 

9.3 PHYSICAL INTERPRETATION OF THE ANGULAR MOMENTUM 
TENSOR 

Theories with Scalar Fields 

In order to get a feeling for what the conserved quantities Jo  are, let us 
look first at theories with only scalar fields. For example, we can think of 
the theory of elastic materials, in which we deal with three scalar fields 
Ra (x). Since all of the fields are scalars, the matrix Mo  in (9.2.14) is zero 
and 

Jae= xa Te — xo Ta ". 	 (9.3.1) 

What is the quantity J12 ? It is conserved because of the invariance pf the 
action under Lorentz transformations 

= r
e 

 w M A 	 . (9.3.2) 

If we use the definition (9.2.7) of M 1 2 and expand the exponential in its 
power series, we find 

AM = 

1 
0 
0 
0 

0 
cos w 
sinw 

0 

0 
— sin (...i 

cos w 
0  

0 
0 
0 
1,  

(9.3.3) 

Thus conservation of J 12  arises from invariance of the action under 
rotations about the x3-axis. Looking at the expression (9.3.1) for the 
density J120 , we find that it is related to the momentum density T" by 

J120=  x  IT 20 x  2T 1 0. 	 (9.3.4) 
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This is just the third component of x X p, where p k  = Tic°  is the momen-
tum density. 

These results generalize nicely. If we define a three-vector Ji = ledkJik , 
then 

	

J= f dxx  X p 	 (9.3.5) 

and conservation of the component n • J arises from invariance of the 
action under rotations about the vector n. If we are describing an elastic 
material, then each small piece of material contributes to the angular 
momentum an amount x x p equal to its "orbital" angular momentum. 
There is no allowance in (9.3.5) for any extra contributions due to spinning 
motions of the small piece or the spin angular momentum of the electrons 
or nuclei in the material. 

	

What about the other components of Jas 	J02, Jo? The conservation 
of these components is due to the invariance of the action under pure 
Lorentz boosts like 

cosh w 	— sinh w 0  0'  
[ em,„ 

j 
1  A = 
 . 

— sinh co 	cosh w 
0 	0  

0 
10  

0 (9.3.6) 

0 	0 0  I. 

Let us write out Jok  as given by (9.3.1): 

Jok = f dX( —  lTk0  + X kT C113 ). (9.3.7) 

The quantity f dxT k°  is the total momentum Pk  of the system. The 
quantity f dxx kr°  is the total energy E of the system times the position 
X k  (t) of the center of energy. Thus 

JOk = tPk + EX k (t). 

Conservation of Jok means that 

k 	dX k  0= ("J = — P + E Ok 	 dt 

(9.3.8) 

(9.3.9) 

Thus the velocity dX/ di of the center of energy of the system is a constant 
equal to P/E, just as it is for point particles. 

Before we leave the scalar field case, we should recall that the momen-
tum tensor for elastic materials was symmetric. This was no accident. It is 
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a consequence of angular momentum conservation, since 

0= a04,9 A—  

Tfl a —  Tap. 	 (9.3.10) 

When we deal with theories with vector fields, we will find that the 
expression (9.3.1) for Jo/ is modified, so that (9.3.10) no longer holds. 

Theories with Vector Fields 

The physics of angular momentum becomes more interesting in theories 
with vector, tensor, or spinor fields. In such theories the angular momen-
tum current has the form (9.2.14), 

where 

0 +S 1j  aft 	a /I 	 aft , 

a 	(ao)  l co Jeri(' 

(9.3.11) 

(9.3.12) 

We have seen that the terms  xa T 	xp  Ta il- can be interpreted as the 
orbital angular momentum associated with the momentum current 	. 
Thus the remaining term is  Sa  P is best described as an "intrinsic" or 
"spin" angular momentum carried by the tensor fields. The terminology 
here is meant to suggest the situation in quantum mechanics, where an 
electron has an orbital angular momentum x x p plus a spin angular 
momentum S.5  

Electrodynamics 

The most important classical field theory in which the fields carry spin 
angular momentum is electrodynamics. We recall the Lagrangian (8.3.4) 
for the electromagnetic field coupled to charged matter, 

= 	 (9.3.13) 

The spin current .Sou? can be calculated using (9.3.12) and a knowledge of 

This terminology is actually more than just suggestive. In the description of electrons in 
quantum field theory the operator that measures the electron spin is precisely f dx 
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the transformation law for the fields, ()_41   
kAAI 

0 	0 	\ 
.11/1,0 = 0 

[ MaP ]
'IV  

We find 

3 e  [M,] A
a
ila 

F"x f - ego°. -i-efig.,0 1A°, 

or 

S= P.AA - FP pA„. 	 (9.3,14) 

In order to interpret S, let us calculate the spin density 

si=1- 5k1skl ° 
	

(9.3.15) 

for an electromagnetic wave. Using (9.3.14) we find 

s=E X A. 	 (9.3.16) 

To describe a circularly polarized plane wave traveling in the z-direction, 
we can choose* a potential 

A g (x) = (0,a cos [c,o(z — t) ] , -T- a sin {al(z t)], 0). 	(9.3.17) 

The minus (plus) sign corresponds to a left (right) circularly polarized 
wave. The corresponding electric field is 

Ek= aoAk — akAo= — a oA k 	 (9.3.18) 

Thus the spin density carried by this wave is 

s= -4-  a2(.44, 	 (9.3.19) 

where i is a unit vector pointing in the z-direction. 

*The spin density s is gauge dependent, so we have made a specific choice of gauge. However, 
s is unaffected by a gauge change of the form A 00—>A A GO + Ea A  cos 16)(Z — + II)). 
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This result can be understood very simply by thinking of the wave as a 
beam of photons. Each photon carries an energy hi. If there are N 
photons per unit volume, the energy density is T °° =  Nhw. On the other 
hand, the energy density for this wave, calculated using (8.3.7), is T (' 
= a2w 2 . Thus a2 =  Nh/o.). This result enables us to write the spin density in 
terms of the photon density 'N: 

	

s= ±  NM. 	 (9.3.20) 

Apparently each left circularly polarized photon traveling in the z-
direction carries spin angular momentum +H; each right polarized pho-
ton carries angular momentum — hi. 

We have given a simple picture of the spin density of the electromag-
netic field by using the language of quantum electrodynamics (spinning 
photons). Nevertheless, this spin density is a feature of classical elec-
trodynamics. Furthermore, the angular momentum of a circularly 
polarized light beam can be measured in a classical macroscopic experi-

'ment. One passes the beam through a "half wave plate," which changes left 
polarized light into right polarized light. In the process, the plate absorbs 
2h of angular momentum from each photon that passes through it. If the 
plate is suspended on a thin thread, it can be observed to rotate.* 

9.4 THE SYMMETRIZED MOMENTUM TENSOR 

We have seen that the angular momentum tensor in theories with vector 
(or tensor or spinor) fields contains a spin term Sm3 ,`. In such theories the 
tensor 7, which we will call the "canonical" momentum tensor, is not 
symmetric. 

0= at,J„,03 1` = a,[xa 	— 	+ 

so that 

ofP 	ftet 	aI3  

In this section we find that it is always possible to define a new, symmetric 
momentum tensor 0 1' which leads to the same total momentum f dx 04  as 
the canonical tensor.t 

*R. A. Beth, Phys. Rev. 50, 115 (1936); A. H. S. Holbourn, Nature 137, 31 (1936). 
t The construction of the symmetrized momentum tensor is due to F. J. Belinfante, Physica 7, 
449 (1940), and L. Rosenfeld, Mem. Acad. R. Belg. Sci. 18, No. 6 (1940). 
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Why is 0" important? It would seem that there is little basis for 
preferring one of the two tensors CPu' and T" if they lead to the same total 
momentum and energy. The only difference lies in the different description 
of where the energy is located. But when we investigate gravity in Chapter 
11, the location of energy will be important, since energy is the source of 
the gravitational field. At this point it is sufficient to say that in the theory 
of general relativity, the tensor Co" rather than T" is the source of the 
gravitational field. In electrodynamics the symmetric tensor 0""(x) has the 
additional advantage that it is gauge invariant while T" is not. 

The construction of 0" begins with the spin tensor S. /3x . From its 
definition (9.3.12) we see that Sao '  is antisymmetric in its first two indices. 
Thus the tensor 

Sj1 	 (9.4.1) 

is antisymmetric in its last two indices. We define 

OP= T"+ 3 p G"P. 	 (9.4.2) 

Since G"" is antisymmetric in the indices pp, the conservation of 19" is 
equivalent to conservation of P": 

apeo- = ap TPY + av ae G"P= av  r" =0. 	 (9.4.3) 

Using the antisymmetry of G'ti and an integration by parts,* we find 
that 0" and T" give the same total momentum: 

3 

f dx — f dx TO= f dx ap  GOP = E f dxak cok= O. (9.4.4) 
k=1 

Finally, we can use conservation of momentum and angular momentum 
to show that e" is symmetric: 

— 0"`-= T"—  

but 

0 =  

= p [xPT" — xPT°P+ Sp"] 

= 	— TrP— a S"PP , 

*We assume that the fields fall off sufficiently rapidly as lx1—>oc so that the surface term in 
(9.4.4) vanishes. 
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so that 

(9.4.5) 

Angular Momentum 

In theories with scalar fields only, the canonical momentum tensor Ti"'  is 
symmetric and the "canonical" angular momentum tensor JaSx  is equal to 
x aTft k — .x/37'x . Now that we have a symmetric momentum tensor at 
hand for any theory, we are tempted to use it to define an angular 
momentum tensor 

irk  = X “0 Px — x'98")'. 	 (9.4.6) 

This tensor is distinguished by the lack of a spin term like that occurring in 
the canonical angular momentum tensor 

JaSx = x"T132`— x 13Tax + 

Thus the angular momentum Jeafl= f dxJ;fl °  contains only "orbital" angu-
lar momentum. 

Can we get away with this? We first note that ./;13k  is conserved as a 
direct consequence of the fact that 0" is symmetric and conserved. In 
order to compare the total angular momenta found by integrating Jr,  and 
JaPA , we can insert the definition (9.4.2) of BF"' into (9.4.6): 

J843À  = xar A  — x sr" + x "0, OAP — x/330  G"P 

= x 'Tfix  — xliT" — 	+ G"fl 

+8,,(xu0xu— xl3G"u). 

From the definition (9.4.1) of 	we can deduce that G— 04* 
so that 

./843À =./"Px + a p(x'G'nP— xfiG"u). 	 (9.4.7) 

If we now recall that GI34  is antisymmetric in its last two indices and use 
an integration by parts we find 

dx../0"13°  — f dx Jafl °  

3 

E f d3x a (X 'YG P°P  X SG "°P) 

P=1 

=0. 	 (9.4.8) 
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Thus we can indeed use Jp" in place of J O x  as the angular momentum 
current, if we so wish. 

A Mechanical Analogy 

A simple mechanical example may serve to clarify the formal construction 
just presented. Imagine that on a Sunday morning everybody in London 
drives his car continuously around his block in a counterclockwise direc-
tion, as shown in Figure 9.1. The cars circling block number (N 1 ,N2) have 
a net momentum of zero and a net angular momentum s(N 1 ,N 2), where 
s(N) is proportional to the number of cars circling the block. 

If  s(N) is a slowly varying function of N, it is sensible to give a 
macroscopic description of this situation. We may say that the macro-
scopic momentum density Tk° is zero and that the macroscopic angular 
momentum density is J  120 =  s 120 = s  ) 

On the other hand, we can base a macroscopic description on a street by 
street accounting instead of a block by block accounting. Suppose, as 
shown in Figure 9.1, that s(N) increases as one moves east. Then each 
north-south street carries a net flow of cars toward the south. The magni-
tude of this flow is proportional to Ds/ aN,. Thus there is "really" an 

Figure 9.1 Angular momentum of traffic flow in London. 
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average momentum per block of 

as n 10 = (const) as  
aN2  ' 

02° = — (const)—
aN 

 . 

A straightforward calculation 'shows that the constant appearing here is f. 
This result is the same as the formal definition (9.4.2) of 9J0  if we set 
S °kA =O: 

0;0 =  Tio + ak  sfrO. 	 (9.4.10) 

When the traffic pattern is viewed in this street by street manner, the 
angular momentum of the traffic flow arises from the net flow of cars 
counterclockwise around high s areas and clockwise around low s areas: 

j81  20  = N ie20  _ N 2ew .  

The reader may ponder whether the (P",P") description or the 
(EPP,JrA) description is preferable in this situation. 

9.5 THE SYMMETRIZED MOMENTUM TENSOR IN 
ELECTRODYNAMICS 

Let us try out the formalism for constructing a symmetric momentum 
tensor by using it on electrodynamics. We recall from Section 9.3 that the 
Lagrangian 

E = — pU (Gat„Ita ) — iFt,,FI"' %AIL 	 (9.5.1) 

for the electromagnetic field interacting with charged matter leads to a 
spin tensor 

S'13u = .PaA 13  — FP/3A a. 	 (9.5.2) 

Thus the tensor GI"'P defined by (9.4.1) is 

G 	— FA. 	 (9.5.3) 

The canonical momentum tensor is given by (8.3.6): 

T" = 	+ (PA p)F"— gl"F0s F4  + A q», 	(9.5.4) 
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where 

au Tr=puu"u9+2p(a"Ra )(ailzb ) 2r1  

U'iab 

is the momentum tensor of the matter. We form OPP by adding GI" to 
TP.P: 

o"P=Tr+(a PA p — a pA '`)F" — gl"Fa0 Fal3  

+ !V( '  ap vP). 

In the second term we recognize Fs", and we note that the last term is zero 
on account of the equation of motion* for FPP. Thus 

= Tr, 	 (9.5.5) 

= 	FrP — gl"Fal3 F°. 

Three nice things have happened here. The new tensor is symmetric, as 
expected. It is gauge invariant. Finally, it splits into two terms, one 
involving only the matter fields Ra, the other involving only the elec-
tromagnetic field Ft" . Thus one may speak of the energy of matter, and 
the energy of the electromagnetic field 01°  without needing an interaction 
energy like Tr = A °Jo. 

The electromagnetic part of 	is probably already familiar to the 
reader. The energy density is 

00.E0 = 1(E 2 + B2) . 	 (9.5.6) 

The energy current, usually called Poynting's vector, is 

®Ok _(E X B)k- 	 (9.5.7) 

The momentum density el is also equal to Poynting's vector, since (.3" is 
symmetric. Finally, the momentum current, often called the Maxwell stress 

*When the Lagrangian is a function of the fields and their first derivatives, so is the canonical 
momentum tensor TF" . However, the symmetrized tensor CiP' can depend also on the second 
derivatives of the fields, since its definition involves derivatives of the spin current S 424`. 
Fortunately, the second derivatives of the fields can usually be eliminated from Cv" by using 
the equations of motion, as was done here. 
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tensor, is 

	

eu — Ei E;  — B,B;  + 	(E2 + B2). 	 (9.5.8) 

We may recall from (8.3.9) that the rate of momentum transfer from the 
electromagnetic field to matter is 

	

apoz Fo' 	 (9.5.9) 

(This is just the force law usually thought of as defining P"(x).) Since 
we can also write 

(9.5.10) 

It is left as an exercise (Problem I) to verify (9.5.10) directly from the 
equations of motion for  F. 

Angular Momentum 

If one uses or  to describe the momentum flow in an electromagnetic field, 
then one might naturally use 4/31`= x IV" to describe the flow of 
angular momentum. Consider the case of a left circularly polarized plane 
wave propagating in the z-direction, as discussed in Section 9.3. We recall 
that such a wave carries an angular momentum density 

j  20 =  s  120 = Nh,  

where N=Tw/ho is the number of photons per unit volume. However, 
direct _calculation of .19  gives 

jei 20 = x le20 _ x 2e 10 =0 

since the momentum density ei° =(E x B)1  is a vector pointing precisely 
in the z-direction. 

What happened to the spin angular momentum of the circularly 
polarized photons? The example in Section 9.4 of the traffic flow in 
London should suggest the answer. Near the edge of a beam of light the 
fields Ft' must behave in a complicated way in order to satisfy Maxwell's 
equations while changing from a plane wave inside the beam to zero 
outside the beam. Thus the energy current E x B near the edge need not 
be precisely in the z-direction. In fact, there must be an energy flow in a 
counterclockwise direction around the edge of the beam which gives the 
angular momentum of the beam. Thus by changing descriptions of the 
momentum current, we have assigned the angular momentum to the edge 
of the polarized beam of light instead of to the middle. 
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9.6 A SYMMETRIZED MOMENTUM TENSOR FOR NONRELATIVISTIC 
SYSTEMS 

We have seen that every field theory derived from an action which is 
invariant under translations and Lorentz transformations possesses a con-
served symmetric momentum tensor e'. If the action is invariant under 
translations and rotations but not Lorentz boosts, a similar but less 
powerful theorem can be proved. 

Translational invariance tells us that there is a conserved momentum 
current 7'4`(k = 1,2,3;A=0, 1,2,3). If vector fields are involved in the 
theory, the stress tensor T ki  will not be symmetric. However, rotational 
invariance implies the existence of a conserved angular momentum current 
JkIP, which we choose to write in the form 

jkliA 	 x ykia 	. 	 (9.6.1) 

With the aid of the spin current S' we can construct a new momentum 
current 04' which gives the same total momentum as T4  and for which 
the stress 9 ki  is symmetric. To do so, we define* 

0k0 TkO 	ai ,y /c10 

9k1 Tker 	a0ski0 	a 
 j

vo,k skjl S"1']. . 

2  

(9.6.2) 

(9.6.3) 

Note that 0" is precisely the expression (9.4.10) we obtained for the "real" 
momentum density in the example of traffic flow in London. 

We must show that O kt` has the desired properties. First note that 04  is 
conserved, because T kP is conserved and S ki"' is antisymmetric in its first 
two indices: 

TkP  +iaas = o. 

Second, the total momenta defined by 0" and T" are the sanie because 
(0"— 74°) is a divergence. Finally, we prove that 0 k1 = 0 1k  by exploiting 
the conservation of momentum and angular momentum: 

o  = A rIkjh =  Tki T" A
FL') 

= 0k1 olk 
u 

c, 
 

*This construction is not useful in a Lorentz invariant theory because Oki` is not part of a 
tensor under Lorentz transformations. Also, nothing is said about the relation of the 
momentum density O k°  to an energy current ek •  The present definition of O" can be 
obtained from the Lorentz covariant definition by setting S°4=0. 


