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Central-Difference Formulas
If the function f (x) can be evaluated at values that lie to the left and right of x , then
the best two-point formula will involve abscissas that are chosen symmetrically on both
sides of x .

Theorem 6.1 (Centered Formula of Order O(h2)). Assume that f ∈ C3[a, b] and
that x − h, x, x + h ∈ [a, b]. Then

(3) f ′(x) ≈ f (x + h)− f (x − h)

2h
.

Furthermore, there exists a number c = c(x) ∈ [a, b] such that

(4) f ′(x) = f (x + h)− f (x − h)

2h
+ Etrunc( f, h),

where

Etrunc( f, h) = −h2 f (3)(c)

6
= O(h2).

The term E( f, h) is called the truncation error.

Proof. Start with the second-degree Taylor expansions f (x) = P2(x)+ E2(x), about
x , for f (x + h) and f (x − h):

(5) f (x + h) = f (x)+ f ′(x)h + f (2)(x)h2

2! + f (3)(c1)h3

3!
and

(6) f (x − h) = f (x)− f ′(x)h + f (2)(x)h2

2! − f (3)(c2)h3

3! .

After (6) is subtracted from (5), the result is

(7) f (x + h)− f (x − h) = 2 f ′(x)h + (( f (3)(c1)+ f (3)(c2))h3

3! .
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Since f (3)(x) is continuous, the intermediate value theorem can be used to find a
value c so that

(8)
f (3)(c1)+ f (3)(c2)

2
= f (3)(c).

This can be substituted into (7) and the terms rearranged to yield

(9) f ′(x) = f (x + h)− f (x − h)

2h
− f (3)(c)h2

3! .

The first term on the right side of (9) is the central-difference formula (3), the second
term is the truncation error, and the proof is complete. •

Suppose that the value of the third derivative f (3)(c) does not change too rapidly;
then the truncation error in (4) goes to zero in the same manner as h2, which is ex-
pressed by using the notation O(h2). When computer calculations are used, it is not
desirable to choose h too small. For this reason it is useful to have a formula for
approximating f ′(x) that has a truncation error term of the order O(h4).

Theorem 6.2 (Centered Formula of Order O(h4)). Assume that f ∈ C5[a, b] and
that x − 2h, x − h, x , x + h, x + 2h ∈ [a, b]. Then

(10) f ′(x) ≈ − f (x + 2h)+ 8 f (x + h)− 8 f (x − h)+ f (x − 2h)

12h
.

Furthermore, there exists a number c = c(x) ∈ [a, b] such that

(11) f ′(x) = − f (x + 2h)+ 8 f (x + h)− 8 f (x − h)+ f (x − 2h)

12h
+ Etrunc( f, h),

where

Etrunc( f, h) = h4 f (5)(c)

30
= O(h4).

Proof. One way to derive formula (10) is as follows. Start with the difference between
the fourth-degree Taylor expansions f (x) = P4(x)+ E4(x), about x , of f (x + h) and
f (x − h):

(12) f (x + h)− f (x − h) = 2 f ′(x)h + 2 f (3)(x)h3

3! + 2 f (5)(c1)h5

5! .

Then use the step size 2h, instead of h, and write down the following approximation:

(13) f (x + 2h)− f (x − 2h) = 4 f ′(x)h + 16 f (3)(x)h3

3! + 64 f (5)(c2)h5

5! .
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Next multiply the terms in equation (12) by 8 and subtract (13) from it. The terms
involving f (3)(x) will be eliminated and we get

− f (x + 2h)+ 8 f (x + h)− 8 f (x − h)+ f (x − 2h)

= 12 f ′(x)h + (16 f (5)(c1)− 64 f (5)(c2))h5

120
.

(14)

If f (5)(x) has one sign and if its magnitude does not change rapidly, we can find a
value c that lies in [x − 2h, x + 2h] so that

(15) 16 f (5)(c1)− 64 f (5)(c2) = −48 f (5)(c).

After (15) is substituted into (14) and the result is solved for f ′(x), we obtain

(16) f ′(x) = − f (x + 2h)+ 8 f (x + h)− 8 f (x − h)+ f (x − 2h)

12h
+ f (5)(c)h4

30
.

The first term on the right side of (16) is the central-difference formula (10) and
the second term is the truncation error; the theorem is proved. •

Suppose that | f (5)(c)| is bounded for c ∈ [a, b]; then the truncation error in (11)
goes to zero in the same manner as h4, which is expressed with the notation O(h4).
Now we can make a comparison of the two formulas (3) and (10). Suppose that f (x)

has five continuous derivatives and that | f (3)(c)| and | f (5)(c)| are about the same.
Then the truncation error for the fourth-order formula (10) is O(h4) and will go to
zero faster than the truncation error O(h2) for the second-order formula (3). This
permits the use of a larger step size.

Example 6.2. Let f (x) = cos(x).

(a) Use formulas (3) and (10) with step sizes h = 0.1, 0.01, 0.001, and 0.0001, and cal-
culate approximations for f ′(0.8). Carry nine decimal places in all the calculations.

(b) Compare with the true value f ′(0.8) = − sin(0.8).
(a) Using formula (3) with h = 0.01, we get

f ′(0.8) ≈ f (0.81)− f (0.79)

0.02
≈ 0.689498433− 0.703845316

0.02
≈ −0.717344150.

Using formula (10) with h = 0.01, we get

f ′(0.8) ≈ − f (0.82)+ 8 f (0.81)− 8 f (0.79)+ f (0.78)

0.12

≈ −0.682221207+ 8(0.689498433)− 8(0.703845316)+ 0.710913538

0.12
≈ −0.717356108.

(b) The error in approximation for formulas (3) and (10) turns out to be−0.000011941 and
0.000000017, respectively. In this example, formula (10) gives a better approximation to
f ′(0.8) than formula (3) when h = 0.01. The error analysis will illuminate this example
and show why this happened . The other calculations are summarized in Table 6.2. �
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6.2 Numerical Differentiation Formulas

More Central-Difference Formulas

The formulas for f ′(x0) in the preceding section required that the function can be
computed at abscissas that lie on both sides of x , and they were referred to as central-
difference formulas. Taylor series can be used to obtain central-difference formulas for
the higher derivatives. The popular choices are those of order O(h2) and O(h4) and are
given in Tables 6.3 and 6.4. In these tables we use the convention that fk = f (x0+kh)

for k = −3, −2, −1, 0, 1, 2, 3.
For illustration, we will derive the formula for f ′′(x) of order O(h2) in Table 6.3.

Start with the Taylor expansions

(1) f (x + h) = f (x)+ h f ′(x)+ h2 f ′′(x)

2
+ h3 f (3)(x)

6
+ h4 f (4)(x)

24
+ · · ·

Table 6.3 Central-Difference Formulas of Order O(h2)

f ′(x0)≈ f1 − f−1

2h

f ′′(x0)≈ f1 − 2 f0 + f−1

h2

f (3)(x0)≈ f2 − 2 f1 + 2 f−1 − f−2

2h3

f (4)(x0)≈ f2 − 4 f1 + 6 f0 − 4 f−1 + f−2

h4

Table 6.4 Central-Difference Formulas of Order O(h4)

f ′(x0)≈ − f2 + 8 f1 − 8 f−1 + f−2

12h

f ′′(x0)≈ − f2 + 16 f1 − 30 f0 + 16 f−1 − f−2

12h2

f (3)(x0)≈ − f3 + 8 f2 − 13 f1 + 13 f−1 − 8 f−2 + f−3

8h3

f (4)(x0)≈ − f3 + 12 f2 − 39 f1 + 56 f0 − 39 f−1 + 12 f−2 − f−3

6h4
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and

(2) f (x − h) = f (x)− h f ′(x)+ h2 f ′′(x)

2
− h3 f (3)(x)

6
+ h4 f (4)(x)

24
− · · · .

Adding equations (1) and (2) will eliminate the terms involving the odd derivatives
f ′(x), f (3)(x), f (5)(x), . . . :

(3) f (x + h)+ f (x − h) = 2 f (x)+ 2h2 f ′′(x)

2
+ 2h4 f (4)(x)

24
+ · · · .

Solving equation (3) for f ′′(x) yields

f ′′(x) = f (x + h)− 2 f (x)+ f (x − h)

h2
− 2h2 f (4)(x)

4!
− 2h4 f (6)(x)

6! − · · · − 2h2k−2 f (2k)(x)

(2k)! − · · · .
(4)

If the series in (4) is truncated at the fourth derivative, there exists a value c that
lies in [x − h, x + h], so that

(5) f ′′(x0) = f1 − 2 f0 + f−1

h2
− h2 f (4)(c)

12
.

This gives us the desired formula for approximating f ′′(x):

(6) f ′′(x0) ≈ f1 − 2 f0 + f−1

h2
.

Example 6.4. Let f (x) = cos(x).

(a) Use formula (6) with h = 0.1, 0.01, and 0.001 and find approximations to f ′′(0.8).
Carry nine decimal places in all calculations.

(b) Compare with the true value f ′′(0.8) = − cos(0.8).
(a) The calculation for h = 0.01 is

f ′′(0.8) ≈ f (0.81)− 2 f (0.80)+ f (0.79)

0.0001

≈ 0.689498433− 2(0.696706709)+ 0.703845316

0.0001
≈ −0.696690000.

(b) The error in this approximation is −0.000016709. The other calculations are summa-
rized in Table 6.5. The error analysis will illuminate this example and show why h = 0.01
was best. �
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Table 6.5 Numerical Approximations to f ′′(x) for
Example 6.4

Step Approximation by Error using
size formula (6) formula (6)

h= 0.1 −0.696126300 −0.000580409
h= 0.01 −0.696690000 −0.000016709
h= 0.001 −0.696000000 −0.000706709

Error Analysis

Let fk = yk + ek , where ek is the error in computing f (xk), including noise in mea-
surement and round-off error. Then formula (6) can be written

(7) f ′′(x0) = y1 − 2y0 + y−1

h2
+ E( f, h).

The error term E(h, f ) for the numerical derivative (7) will have a part due to round-
off error and a part due to truncation error:

(8) E( f, h) = e1 − 2e0 + e−1

h2
− h2 f (4)(c)

12
.

If it is assumed that each error ek is of the magnitude ε, with signs that accumulate
errors, and that | f (4)(x)| ≤ M , then we get the following error bound:

(9) |E( f, h)| ≤ 4ε

h2
+ Mh2

12
.

If h is small, then the contribution 4ε/h2 due to round-off error is large. When
h is large, the contribution Mh2/12 is large. The optimal step size will minimize the
quantity

(10) g(h) = 4ε

h2
+ Mh2

12
.

Setting g′(h) = 0 results in −8ε/h3 + Mh/6 = 0, which yields the equation
h4 = 48ε/M , from which we obtain the optimal value:

(11) h =
(

48ε

M

)1/4

.

When formula (11) is applied to Example 6.4, use the bound | f (4)(x)| ≤ | cos(x)| ≤
1 = M and the value ε = 0.5×10−9. The optimal step size is h = (24×10−9/1)1/4 =
0.01244666, and we see that h = 0.01 was closest to the optimal value.
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Since the portion of the error due to round off is inversely proportional to the square
of h, this term grows when h gets small. This is sometimes referred to as the step-size
dilemma. One partial solution to this problem is to use a formula of higher order so
that a larger value of h will produce the desired accuracy. The formula for f ′′(x0) of
order O(h4) in Table 6.4 is

(12) f ′′(x0) = − f2 + 16 f1 − 30 f0 + 16 f−1 − f−2

12h2
+ E( f, h).

The error term for (12) has the form

(13) E( f, h) = 16ε

3h2
+ h4 f (6)(c)

90
,

where c lies in the interval [x − 2h, x + 2h]. A bound for |E( f, h)| is

(14) |E( f, h)| ≤ 16ε

3h2
+ h4 M

90
,

where | f (6)(x)| ≤ M . The optimal value for h is given by the formula

(15) h =
(

240ε

M

)1/6

.

Example 6.5. Let f (x) = cos(x).

(a) Use formula (12) with h = 1.0, 0.1, and 0.01 and find approximations to f ′′(0.8).
Carry nine decimal places in all the calculations.

(b) Compare with the true value f ′′(0.8) = − cos(0.8).

(c) Determine the optimal step size.
(a) The calculation for h = 0.1 is

f ′′(0.8)

≈ − f (1.0)+ 16 f (0.9)− 30 f (0.8)+ 16 f (0.7)− f (0.6)

0.12

≈ −0.540302306+ 9.945759488− 20.90120127+ 12.23747499− 0.825335615

0.12
≈ −0.696705958.

(b) The error in this approximation is −0.000000751. The other calculations are summa-
rized in Table 6.6.
(c) When formula (15) is applied, we can use the bound | f (6)(x)| ≤ | cos(x)| ≤ 1 = M and
the value ε = 0.5×10−9. These values give the optimal step size h = (120×10−9/1)1/6 =
0.070231219. �
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