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Abstract: A common feature shared by many quantum gravity models is modi�cations
of two-point functions at energy scales around the Planck scale. Generically, these modi-
�cations induce non-trivial pro�les for the spectral dimension characterizing the underly-
ing quantum spacetime. This thesis investigates the consequences of these modi�cations
within the Unruh radiation detected by an accelerated detector in Minkowski space. While
the Unruh temperature, as a purely geometric e�ect, is protected from quantum gravity
corrections, the induced emission rate of the accelerated detector receives distinct correc-
tions in the prefactor multiplying the Bose-Einstein distribution. Essentially, the modi�ed
two-point functions change the e�ective dimension of spacetime seen by the accelerated
detector. The resulting Unruh dimension has a close relation to the spectral dimension
commonly measured in quantum gravity models.
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1 Introduction
intro

Quantum gravity, as the name suggests, focuses on the quantization of gravity. There are
numerous reasons for pursuing this endeavour, while simultaneously there are reasons as
to why gravity on microscopic scale does not seem to e�ect daily life

Krishnan:2010un
[1]. In particle physics

the e�ects of quantum gravity are (usually) negligible as the energies encountered in the
corresponding experiments are well below the Planck energy scale. For the Planck length,
time and mass

LP =

(
G~
c3

)1/2

, TP =
LP
c
, MP =

~TP
L2
P

, (1.1)

the Planck energy is de�ned as

EP = MP c
2 ≈ 1019GeV. (1.2)

Keeping in mind that most particle experiments are still in the range of 104GeV , it should
not come as a surprise that trans-Planckian events are not (directly) measurable. One pos-
sibility to establish quantum gravity e�ects is by attempting to recognize ultra-violet (UV)
contributions that propagate through to lower, detectable energies. To accomplish this,
it is necessary to construct a theoretical framework describing physics on trans-Planckian
scales. One could of course wonder where the expected breakdown of the present model
comes from. That is: what keeps us from simply quantizing general gravity following the
procedures dictated by quantum �eld theory? As in general relativity it is the metric that
describes the gravitational �eld, quantization of this �eld could be interpreted as the quan-
tization of geometry. This approach is known as covariant quantization and su�ers from
conceptual problems rendering it inadequate. The route to follow requires a perturbative
description of the theory (metric) in terms of E/EP , where the series would be truncated
once the desired order is reached. The resulting theory would be an e�ective �eld theory,
valid below and up to the perturbation order. While this may work for other theories, a
gravity-speci�c di�culty arises once we pass the Planck scale as there E/EP ≈ 1, indicat-
ing we are dealing with a non-renormalizable theory. This tells us that the e�ective �eld
theory is no longer valid and any predictive properties are lost. It is expected then that
at these high energies (small distances) scales, there is a range of degrees of freedom that
make their appearance while remaining concealed at low energies (long distances).

Another conundrum arises when one tries to de�ne observables in a theory of quan-
tized gravity. As in the classical limit (e.g. general relativity) the theory is required to be
di�eomorphism invariant, it seems reasonable to demand the same for its quantized exten-
sion. Consequently, it seems reasonable to demand that any theory of quantum gravity
is background independent i.e. quantum observables should be background independent.
Then there is the question of locality as well. How can one de�ne what is local and what
is not if there is no unique coordinate frame to depend on?

In section (
sec:curved spacetime
2.2) it will be shown that equal-time canonical quantization can be applied

if one chooses a spacetime that admits a Cauchy surface (e.g. the spacetime is globally
hyperbolic). If there is no such Cauchy surface, however, applying equal-time canoni-
cal quantization would violate di�eomorphism invariance and lead to an ill-de�ned time
evolution of the theory.

Di�erent theories trying to resolve these problems (and many more) are at the moment
under construction. For later reference, Sect.

sect:QG
4 will consist of a compact collection of

multiple such theories.
To study e�ects originating from quantum gravity, one can analyze dimensional �ows.

Dimensional �ows are a feature commonly encountered in virtually all approaches to quan-
tum gravity and quantum gravity inspired models

Carlip:2009kf,Carlip:2012md
[2, 3]. The most prominent example of
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a dimensional �ow occurs in Kaluza-Klein theories where the dimensionality of space-
time increases below the compacti�cation scale. An even more intriguing phenomenon of
this form is dynamical dimensional reduction where a speci�c dimensionality of spacetime
decreases at short distances. The prototypical example for this mechanism is provided
by Causal Dynamical Triangulations

Ambjorn:2012jv
[4] where a random walk sees a two-dimensional

spacetime at short distances while long walks exhibit a four-dimensional behavior
Ambjorn:2005db
[5].

Similar features are encountered in Asymptotic Safety
Lauscher:2005qz,Reuter:2011ah,Rechenberger:2012pm,Calcagni:2013vsa
[6, 7, 8, 9], Loop Quantum Grav-

ity
Modesto:2008jz,Caravelli:2009gk,Magliaro:2009if,Calcagni:2013dna,Calcagni:2014cza
[10, 11, 12, 13, 14], Ho°ava-Lifshitz gravity

Sotiriou:2011mu,Sotiriou:2011aa
[15, 16], Causal Set Theory

Eichhorn:2013ova,Carlip:2015mra,Belenchia:2015aia
[17, 18, 19],

κ-Minkowski space
Benedetti:2008gu,Anjana:2015ios,V.:2015msa
[20, 21, 22], non-commutative geometry

Kurkov:2013kfa,Alkofer:2014raa
[23, 24], non-local theories

Modesto:2011kw,Modesto:2015ozb
[25, 26], minimal length models

Padmanabhan:2015vma
[27], and based on the Hagedorn temperature seen by a

gas of strings
Atick:1988si
[28].

The indicator commonly used to study dimensional �ows is the spectral dimension
(see Sect.

sect:spectral
3). The (typically Euclidean) quantum spacetime is equipped with an arti�cial

di�usion process for a test particle. One then studies the return probability of the particle
as a function of the di�usion time σ. The mathematical de�nition of the spectral dimension
ds is obtained in the limit of in�nitesimal di�usion time σ → 0. On a manifold the spectral
dimension agrees with the topological dimension d. In the context of quantum gravity,
where the properties of the underlying spacetime may depend on the length scales probed
by the di�using particle, it is useful to de�ne a generalized spectral dimension Ds(σ) where
the limit σ → 0 is omitted. The most common behavior of Ds(σ) encountered in quantum
gravity interpolates between Ds = 4 on macroscopic scales and Ds = 2 at short distances.
This observation has also triggered the investigation of multi-scale geometries serving as a
phenomenological model of quantum gravity inspired spacetimes

Calcagni:2012rm
[29].

The spectral dimension bears a close relation to the two-point correlation function G̃
of the di�using particle (see Sect.

sect:QFT
2 for a recap on Green functions). For a massless scalar

particle propagating on a four-dimensional Euclidean space one has G̃ = p−2, which leads
to a scale-independent spectral dimension Ds = 4. Non-trivial Ds-pro�les are created if
the two-point correlation function acquires an anomalous dimension. Based on this close
connection, the interpretation of the spectral dimension as the Hausdor� dimension of the
momentum space has been advocated in

Amelino-Camelia:2013gna
[30]. Note that a non-trivial spectral dimension

does not necessarily involve the breaking of Lorentz invariance, since G̃(p2) may be a
function of the momentum four-vector squared and thus a Lorentz invariant quantity.
However, this function can in principle have more general forms than those allowed in
a local quantum �eld theory. One relevant example is a two-point function arising in a
nonlocal �eld theory, de�ned as a theory whose equations of motion have an in�nite number
of derivatives. This form is ubiquitous in Causal Set studies

Aslanbeigi:2014zva
[31].

The �ctitious nature of the di�usion process underlying the spectral dimension then
raises the crucial question whether the �ow of the spectral dimension can be seen in a
physical observable quantity. The main goal of this research is to explicitly demonstrate
that this is indeed the case: the non-trivial momentum pro�les leave an imprint in the
Unruh e�ect felt by an accelerated detector. More precisely, the e�ective dimension of
spacetime seen by the Unruh detector is determined by the spectral dimension.

The Unruh e�ect
Fulling:1972md,Davies:1974th,Unruh:1976db
[32, 33, 34] (also see

Crispino:2007eb,Birrell:1982ix
[49, 35] for reviews) is one of the most intriguing

phenomena occurring within quantum �eld theory in Minkowski space. Essentially, it
predicts that to an accelerated observer (Rindler observer) the Minkowski vacuum appears
as a thermal state whose temperature is proportional to the acceleration parameter. This
acceleration radiation can leave imprints in a variety of phenomenological contexts: for
instance in the transverse polarization of electrons and positrons in particle storage rings
(Sokulov-Ternov e�ect)

Akhmedov:2006nd,Akhmedov:2007xu
[36, 37], at the onset of quark gluon plasma formation due to heavy
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ions collisions
Kharzeev:2005iz
[38], on the dynamics of electrons in Penning traps, of ultra-intense lasers,

and atoms in microwave cavities (see
Crispino:2007eb
[49] and references therein), or in the Berry phase

acquired by the accelerated detector
MartinMartinez:2010sg
[39]. Recently it has also been shown that the low

energy signatures of Unruh radiation are very sensitive to high energy nonlocality
Belenchia:2016sym
[40].

On theoretical grounds the Unruh e�ect can be derived by de�ning creation and an-
nihilation operators with respect to the positive and negative frequency modes associated
with the Minkowski and Rindler space and relating them through a Bogoliubov transform,
see e.g.

Mukhanov:2007zz
[41] for a pedagogical exposition or Sect.

sect:unruh
5. The origin of the thermal spectrum

is essentially geometrical, in the sense that it depends solely on the presence of a horizon
in the Rindler frame. As a geometric e�ect, the Unruh temperature is insensitive to the
speci�c form of the Lagrangian or the interactions under consideration and thermality of
the spectrum is essentially ensured by Lorentz invariance

Unruh:1983ac
[42]. It will be shown that this

also holds for the broad class of quantum gravity corrections considered in this work.1

While not a�ecting the thermal nature of the Unruh radiation, quantum gravity induced
modi�cations of the two-point function a�ect the pro�le functions multiplying the thermal
distribution in a more or less radical way.

In order to make the connection between dimensional �ows and modi�cations in the
Unruh e�ect as close as possible, the detector approach

Agullo:2010iq
[45] will be followed. The central

idea is to consider a detector made from a two-level system with an upper, excited state
2 and a lower state 1 being separated by the energy ∆E ≡ E2 − E1 > 0 coupled to a
scalar �eld. The transition probabilities induced by the scalar can be expressed in terms of
the positive-frequency Wightman function of the Minkowski vacuum state. The emission
rates of the detector can be computed by evaluating a Fourier transform of the two-point
function along the worldline of an accelerated observer. For a standard massless scalar
�eld, it is then rather straightforward to show that the Green's function evaluated on
the worldline satis�es a Kubo-Martin-Schwinger (KMS) condition (see Sect.

sect:KMS
2.1.3) where

the periodicity in Euclidean time depends on the properties of the worldline only. The
resulting Unruh temperature is proportional to the acceleration a. This setup also makes
clear that corrections to the two-point functions, e.g. induced by quantum �uctuations
at small scales, may leave their �ngerprints in the transition rate of the Unruh detector.
Both, a dynamical dimensional �ow and corrections to the transition rate, can be traced
back to the same source: a non-trivial momentum dependence of the two-point function.

In this work the focus will lie on the asymptotic structure of the detector-induced
emission rates in a �xed Minkowski background.2 We will show that di�erent types of
dimensional �ows leave distinct signatures in the detector rates. In particular, in the case
of dimensional reduction at high energies, one �nds a suppression of the rates, whereas
for a dimensional enhancement at high energies, as in Kaluza-Klein models, the rate in-
creases. Since the transition probability of the Unruh detector is clearly a signature which
is observable at least in principle, we expect that it can be used to make phenomeno-
logical predictions from quantum gravity, allowing a direct comparison between various
approaches.

The �rst half of this thesis (Sect.
sect:QFT
2 to Sect.

sect:QG
4) can be seen as a pedagogical introduc-

tion of concepts and tools needed to acquire the results derived in the sections that follow.
Sect.

sect:QFT
2 shortly recaps the quantization of massless scalar �elds in Minkowski and curved

spacetime, after which Sect.
sect:spectral
3 derives the di�usion equation and discusses the origin of

1For similar studies in the context of anisotropic dispersion relations and a minimal length scale see
Rinaldi:2008qt,Nicolini:2009dr,Agullo:2010iq
[43, 44, 45]

2Throughout the work, e�ects related to the �switching function� χ, which controls the time dependence
of the detector coupling strength, will not be taken into account. See

MartinMartinez:2012th,Alhambra:2013uja
[46, 47] for details.
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the spectral dimension from di�usion processes. For later purposes the KMS condition
is derived in Sect.

sect:KMS
2.1.3. As a �nal part of the introduction, Sect.

sect:QG
4 discusses the basic

concepts of quantum gravity and approaches therein followed by a direct derivation of the
Unruh e�ect in Sect.

sect:unruh
5. The original research carried out is organized as follows. Sect.

sect.2
6

brie�y reviews the detector approach to the Unruh e�ect. Dimensional �ows entail speci�c
modi�cations of the two-point correlation functions entering into the detector approach
and we derive the master formula capturing the resulting corrections to the Unruh e�ect
in Sect.

sect.3
7. In Sect.

sect.3b
8 we de�ne the Unruh dimension as the e�ective dimension seen by

the detector and relate it to the spectral dimension. In Sect.
sect.4
9 we apply this formula to

speci�c examples taken from phenomenologically motivated multi-scale models (Sect.
sect.41
9.1),

Kaluza-Klein theory (Sect.
sect.43
9.2), spectral actions (Sect.

sect.44
9.3), and Causal Set Theory (Sect.

sect.45
9.4). We close with a brief discussion of our �ndings in Sect.

sect.5
10.

2 Quantum Field Theory
sect:QFT

In this section, the general methodology for second quantization is brie�y recapped. The
�rst half covers the quantization of a scalar �eld φ on a Minkowski background

wim
[48], whereas

the second half generalizes the developed methodologies to curved backgrounds given cer-
tain speci�c conditions on the curved manifold.

2.1 Scalar �eld quantization in Minkowski spacetime

There are two essential requirements the quantized �elds will have to meet; Lorentz in-
variance (i.e. spacetime obeys Poincaré symmetry) and causality. One can then take a
Hilbert space constructed of relativistic particle states and de�ne �elds to gain a notion of
observables acting on the Hilbert space. For example, a free scalar �eld is classically an
in�nite collection of Harmonic oscillator modes, with Hamiltonian

H =
1

2m
p2 +

1

2
mω2q2, (2.1)

where p is the momentum and q a coordinate in real space. To quantize, one can pro-
mote the Hamiltonian, momentum and space coordinate to operators, (q, p) → (q̂, p̂) and
demanding p̂ and q̂ satisfy [q̂, p̂] = i1̂. The momentum and space coordinate can then be
de�ned in terms of â† and â, the creation and annihilation operators respectively. Doing
so leads to

Ĥ =
1

2m
p̂2 +

1

2
mω2q̂2. (2.2)

Introducing creation/annihilation operators yields

q̂ ≡ â+ â†√
2ω

, p̂ ≡ −iω â+ â†√
2ω

, (2.3)

such that the (discrete) bosonic commutation relations are satis�ed: [â, â†] = 1̂. The
subtlety here is that there are an in�nite number of linear oscillators that need to be
quantized (i.e. there are in�nitely many degrees of freedom). However, as the theory
under consideration is a free theory, the degrees of freedom evolve independently. To see
this, consider a �eld component satisfying the Klein-Gordon equation; (�+m2)f(~x, t) = 0
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where f(~x, t) ∈ R. Performing a Fourier decomposition gives

f(~x, t) =

ˆ
d~p

(2π)3
ei~p·~xg(~p, t), (2.4)

where now for each Fourier mode ~p = (px, px, pz) the Klein-Gordon equation

(
∂2
t + (~p2 +m2)

)
g(~p, t) = 0, (2.5)

is satis�ed by g(~p, t) with frequency ω ≡
√
~p2 +m2. As the modes are now decoupled, the

general solution to the Klein-Gordon equation is that of a linear superposition of harmonic
oscillators. This justi�es the quantization procedure as described above.

Making the transition from discrete to continuous, the position operator q̂ becomes a
�eld

φ̂(~x) =

ˆ
d~p

(2π)3

1

2ω

(
â~pe

i~p·~x + â†~pe
−i~p·~x

)
, (2.6)

where now
[â~p, â

†
~p′ ] = (2π)3δ(~p− ~p′)1̂. (2.7)

So far the �elds exhibit no time dependency yet. To discuss the consequences of causality,
however, a time dependent formalism has to be developed. Suppose then that the �eld
under consideration has a time dependence, i.e. φ̂ ≡ φ̂(x) = φ̂(~x, t). As the time evolution
of operators is described by means of the Hamiltonian operator, letting Ĥ work on the
creation/annihilation operators would give the time dependent �eld. In this procedure one

makes use of the fact that [Ĥ, â~p] = −ωâ~p and [Ĥ, â†~p] = ωâ†~p. By repeatedly applying Ĥ on

â~p and â
†
~p (or equivalently, on φ̂), the exponential map of Ĥ can be constructed such that

the evaluation of φ̂(x) = eiĤtφ̂(~x)e−iĤt can be performed. One can also take a di�erent
route and use the Lorentz invariant momentum space measure

ˆ
d4p

(2π)3
δ(p2 −m2)Θ(p0) =

ˆ
d4p

(2π)3

(
δ(p0 − ω)

2ω
+
δ(p0 + ω)

2ω

)
Θ(p0)

=

ˆ
d~p

(2π)3

1

2ω
.

(2.8) eq:LorInv

Note that the Heaviside step function restricts p0 to be positive and thus the second delta
function drops out when m is real. Applying this to φ̂ results in

φ̂(x) =

ˆ
d~p

(2π)3

1

2ω

(
â~pe
−ip·x + â†~pe

ip·x
)
p0=ω

. (2.9)

To check if this formalism respects causality, one can evaluate [φ̂(x), φ̂(y)] and check
whether it gives zero when (x − y)2 < 0 (i.e. for spacelike separations of the spacetime
points x and y). In the explicit check, one can use that

[
φ̂(x), φ̂(y)

]
=

ˆ
d~p

(2π)3

1

2ω

(
e−ip·(x−y) − eip·(x−y)

)
p0=ω

, (2.10)

is Lorentz invariant due to (
eq:LorInv
2.8). Another useful property is that taking x→ −x, y → −y

yields the same expression if x0 − y0 = 0. This can be checked by taking ~p → −~p. As
for (x − y)2 < 0 there is always a Lorentz transformation such that x′0 − y′0 = 0, the

7



commutator above indeed evaluates to zero. Furthermore (
eq:LorInv
2.8) can be used to derive the

1-particle completeness relation by considering that

|~k〉 =

ˆ
d~p

(2π)3

1

2ω
|~p〉 〈~p|~k〉 , (2.11)

which implies a completeness relation of the form

1̂ =

ˆ
d~p

(2π)3

1

2ω
|~p〉 〈~p| . (2.12)

Note that in the examples above, there is a notion of locality in the sense that the La-
grangian contains no interaction terms that couple a �eld at spacetime point x to a �eld
at spacetime point y.

An alternative route to quantization would be to start out with a classical �eld theory
that already satis�es the requirements imposed by relativity and apply canonical quantiza-
tion to the �elds. In the case of the free Klein-Gordon theory, this entails starting out with
the classical Lagrangian for a real scalar �eld and extracting the Klein-Gordon equation
by means of the Euler-Lagrange equation. The �elds φj and their conjugate momenta
πk = ∂tφk become operators that satisfy the equal time canonical commutation relations,
i.e.

[φ̂j(x), π̂k(y)] = iδjkδ
3(~x− ~y),

[φ̂j(x), φ̂k(y)] = 0,

[π̂j(x), π̂k(y)] = 0,

(2.13) eq:comm flat

where the labels j and k rever to the jth and kth �eld.

2.1.1 Two-point functions

To evaluate the vacuum expectation values of free �elds, 〈0| [φ̂(x), φ̂(y)] |0〉, it is necessary
to invert the equation of motion of the theory. In the case of the free scalar �eld, this
entails constructing the Green function of the operator (� + m2). Let G(x − y) be this
Green function in real space and G̃(p) denote its momentum space representation, that is

iG(x− y) =

ˆ
d4p

(2π)4
G̃(p)e−ip·(x−y)

where

(−p2 +m2)G̃(p) = −i ⇒ G̃(p) =
i

p2 −m2
,

(2.14)

here G(x− y) is the Green function in real space, see Fig.
fig:G
1. The integral over G̃ contains

divergencies at p0 = ω and p0 = −ω which cause the Fourier integral to blow up. To
obtain a �nite result, the contour integral procedure is implemented. There are several
options one can choose from to circle around these poles, depending on the type of process
under consideration (e.g. depending on the boundary conditions). For taking into account
in�uences from the past, the poles are shifted into the negative imaginary part of the
plane by an amount iε which is taken to zero after integration. The resulting contour
integral carries the name retarded Green function GR(x− y) = −θ(x0 − y0)G(x− y). The
exact opposite procedure, i.e. shifting the poles upwards along the positive imaginary axis,
takes in�uences from the future into account and is known as the advanced Green function
GA(x− y) = θ(y0−x0)G(x− y), see Fig.

fig:RetAdv
2. The Green function G(x− y) can be split into
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Figure 1: Green functionfig:G

Figure 2: Retarded and advanced Green func-
tionfig:RetAdv

Figure 3: Positive and negative Wightman
functionsfig:Wightman

Figure 4: Feynmann propagatorfig:Feynmann

a positive/negative frequency part, i.e. a contour integral that circles around the pole in
the positive/negative real part of the plane. These positive and negative frequency parts
are denoted as G+(x− y) = 〈0| φ̂(x)φ̂(y) |0〉 and G−(x− y) = 〈0| φ̂(y)φ̂(x) |0〉 respectively,
satisfy iG(x− y) = G+(x− y)−G−(x− y) and are referred to as the positive and negative
Wightman functions, see Fig.

fig:Wightman
3. Another useful contour is the Feynman Green function

GF (x− y) which can be constructed from the Wightman functions as GF (x− y) = θ(x0−
y0)G+(x− y) + θ(y0− x0)G−(x− y) and yields the time-ordered product of the �elds, see
Fig.

fig:Feynmann
4.

2.1.2 Källén-Lehmann spectral representation

For later purposes, it is convenient to introduce the Källén-Lehmann spectral represen-

tation. When dealing with a theory that allows interaction terms, the Källén-Lehmann
spectral representation gives the form of the Green function in terms of a sum over Green
functions describing a free theory. Consider the vacuum expectation value of a complex
scalar �eld, whit groundstate |λGS〉, 〈λGS | φ̂(x)φ̂†(y) |λGS〉, which can be rewritten by
using the completeness relation

1̂ = |λGS〉 〈λGS |+
∑

λ

ˆ
d~p

(2π)3

|λ~p〉 〈λ~p|
2Eλ

, (2.15)
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into

〈λGS | φ̂(x)φ̂†(y) |λGS〉 = 〈λGS | φ̂(x) |λGS〉 〈λGS | φ̂†(y) |λGS〉

+
∑

λ

ˆ
d~p

(2π)3

〈λGS | φ̂(x) |λ~p〉 〈λ~p| φ̂†(y) |λGS〉
2Eλ

.
(2.16) eq:KL

Here |λGS〉 denotes the ground state of the interacting theory (the free theory equivalent

would be |0〉), |λ~p〉 denotes an excited state and Eλ =
√
~p2 +m2

λ with mλ the mass

belonging to a zero-momentum state (i.e. pµ0 = (mλ,~0)). Note that mλ cannot be thought
of as the mass belonging to a particular particle as the theory under consideration is an
interacting theory. If the sum over λ yields a complete set of states and if these states
are eigenstates of the momentum four-vector, then on the account of invariance under
translations and Lorentz transformations, it is possible to write

〈λGS | φ̂(x) |λ~p〉 〈λ~p| φ̂†(y) |λGS〉 = 〈λGS | eiP̂ ·xφ̂(x)e−iP̂ ·x |λ~p〉 〈λ~p| e−iP̂ ·yφ̂†(y)eiP̂ ·y |λGS〉

= e−ip·(x−y) 〈λGS | φ̂(0) |λ~p〉 〈λ~p| φ̂†(0) |λGS〉
∣∣∣
p0=E~p

.

(2.17)

Here P̂ is the generator of spacetime translations such that P̂µ = (Ĥ − E01̂, ~̂P ) with
eigenvalues pµ = (E − E0, ~p). As mentioned before, the purpose of the Källén-Lehmann
representation is to write an interacting theory as a sum over free theories. To meet this
requirement, it is necessary to rewrite the expression above in terms of λ~0 instead of λ~p.

Let Û(Λ) be the (unitary) boost operator, then one can show that Û(Λ) |λ~0〉 = |λ~p〉 by
using that the generator P̂µ, and thus its eigenvalues, transforms as a contravariant vector
under boosts, i.e. Û−1(Λ)P̂µÛ(Λ) = ΛµνP̂ ν . Likewise, the ground state of the theory

|λGS〉 should be invariant under the Poincaré group, suggesting that eiP̂ ·x |λGS〉 = |λGS〉
and Û(Λ) |λGS〉 = |ΛGS〉. Taking this into account, those brakets containing an excited
state become

e−ip·x 〈λGS | φ̂(0) |λ~p〉
∣∣∣
p0=E~p

= e−ip·x 〈λGS | Û−1Û φ̂(0)Û−1Û |λ~p〉
∣∣∣
p0=E~p

= e−ip·x 〈λGS | φ̂(0) |λ ~Λp〉
∣∣∣
p0=E~p

= e−ip·x 〈λGS | φ̂(0) |λ~0〉
∣∣∣
p0=E~p

,

(2.18)

where in the last line the Lorentz transformation was chosen such that ~Λp = ~0. For the
ground-state term of (

eq:KL
2.16), one can write

〈λGS | φ̂(x) |λGS〉 = 〈λGS | φ̂(0) |λGS〉 = vev. (2.19)

The vacuum expectation value (vev) of φ̂ yields a delta function and in most cases it is
subtracted by rede�ning the �eld φ̂(x) → φ̂(x) − vev. Assuming this has been done and
that x0 > y0, (

eq:KL
2.16) becomes

〈λGS | φ̂(x)φ̂†(y) |λGS〉 =
∑

λ

ˆ
d~p

(2π)3
e−ip·(x−y) 〈λGS | φ̂(0) |λ~0〉 〈λ~0| φ̂

†(0) |λGS〉
2Eλ

∣∣∣∣∣
p0=E~p

=
∑

λ

∣∣∣〈λGS | φ̂(0) |λ~0〉
∣∣∣
2
ˆ

dp

(2π)4

ie−ip·(x−y)

p2 −m2
λ + iε

=

ˆ ∞
0

dµ2ρ(µ2)G+(x− y;µ2),

(2.20) eq:spectraldensity
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where G+ is the positive-frequency Wightman function and

ρ(µ2) =
∑

λ

δ(µ2 −m2
λ)
∣∣∣〈λGS | φ̂(0) |λ~0〉

∣∣∣
2
, (2.21)

is known as the spectral density with squared invariant mass µ2. If instead y0 > x0 in
(
eq:spectraldensity
2.20), the above equation would have yielded the negative-frequency Wightman function
G−.

2.1.3 KMS condition
sect:KMS

The KMS (Kubo, Martin-Schwinger) condition provides a description of (thermal) equi-
librium states without having to restrict oneself to systems with a �nite number of degrees
of freedom. In general it is the Gibbs' distribution that is most commonly used to describe
equilibrium states. For the case of a canonical ensemble, the probability of a system X
being in the non-degenerate state x (or the random variable X to have value x) is given
by

P (X = x) =
1

Z
e−βE . (2.22)

Here β is the inverse temperature, E is the energy of the state x and Z = Tre−βE is the
(normalizing) partition function. Problems arise when one takes the thermodynamic limit
(taking the size to in�nity) and thus an alternative procedure is needed.

For an observable Ô, the time evolution can be written as

ôt(Ô) = eiĤtOe−iĤt, (2.23)

and a Gibbs state ωβ of the observable Ô is de�ned as:

ωβ(Ô) =
1

Z
Tr(e−βĤÔ). (2.24)

If one then takes two observables Ô and P̂ and, by using the cyclic properties of the trace,
computes the Gibbs state as

ωβ(ôt(Ô)P̂ ) =
1

Z
Tr
(
e−βĤeiĤtÔe−iĤtP̂

)

=
1

Z
Tr
(
P̂ eiĤ(t+iβ)Ôe−iĤt

)

= ωβ

(
P̂ eiĤ(t+iβ)Ôe−iĤ(t+iβ)

)

= ωβ(P̂ ôt+iβ(Ô)),

(2.25)

then the de�nition of a (τ, β)-KMS state can be taken as

ω(P̂ τiβ(Ô)) = ω(ÔP̂ ). (2.26) eq:KMS

The upshot of the short derivation above is that when one is treating a system in a KMS
thermal equilibrium, the property (

eq:KMS
2.26) automatically holds. An application of the KMS

condition can be found in Sect.
sect:2.2
6.2
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2.2 Scalar �eld quantization in curved spacetime
sec:curved spacetime

Even though this thesis only considers �at spacetime, it is instructive to take a closer look
at quantization in curved spacetime

Krishnan:2010un
[1] as Rindler space exhibits properties similar to those

in curved spacetime, Sect.
sect:unruh
5. The main problem of quantization in curved spacetime is that

Poincaré symmetry has been demoted from a global to a local symmetry as compared to
�at spacetime. As a consequence, it is no longer sensible to use irreducible representations
of the Poincaré group for the construction of one-particle states. One notion that we can
still depend on, however, is that of causality. To quantize a scalar �eld in curved spacetime,
one can develop a one-particle Hilbert space such that the �eld operations on this space are
causal. The simplest example one can work through is again that of the curved spacetime
Klein-Gordon equation (

� +m2
)
φ = 0, (2.27)

where � = −gµν∇µ∇ν , the curved spacetime d'Alembertian. The Klein-Gordon equation
is the equation of motion of the minimally coupled action (i.e. there is only a coupling to
the invariant spacetime volume)

S =

ˆ
d4x

√
|g|
2

(
gµν∂µφ∂νφ−m2φ2

)
, (2.28)

respecting di�eomorphism invariance. Note that in �at spacetime, di�eomorphism invari-
ance reduces to Poincaré invariance as boosts, rotations and translations allow for one
coordinate system to be transformed into another. In �at spacetime the natural next step
would be to construct the solutions to the (�at spacetime) Klein-Gordon equation and note
that there exists an isomorphism between states in the one-particle Hilbert space and the
positive frequency solutions of the Klein-Gordon equation (hermitian conjugation of these
solutions give the negative frequency modes). The existence of this isomorphism allows
for the Hilbert space to be constructed as the space of positive frequency solutions of the
Klein-Gordon equation. A similar method in curved spacetime requires one to demand
that the manifold, M , on which quantization takes place, is globally hyperbolic. Equiva-
lently, one demands that M has a global Cauchy surface. A Cauchy surface S is a spatial
slice such that for any point p ∈ M in the future of the surface, the (past-directed) inex-
tendible curve from p to S crosses S only once. Here inextindible denotes a curve without
�xed end-points and in the particular case of a Cauchy surface the curves cannot be closed
either. If M in its whole can be described by the initial data on a Cauchy surface, then
one says M has a global Cauchy surface and is thus globally hyperbolic.

The essential consequence of the above is that it ensures the entire future/past can
be determined by the initial data on one spatial slice. One can then introduce canonical
equal-time commutators according to

[φ̂(x), nµ∂µφ̂(y)]S =
i√
|h|
δ3(~x− ~y)

[φ̂(x), φ̂(y)]S = 0

[nµ∂µφ̂(x), nν∂ν φ̂(y)]S = 0.

(2.29) eq:comm curv

Here S is the Cauchy slice, nµ the normal to the surface and h the determinant of the
induced metric on the Cauchy slice. Note that nµ∂µφ̂(x) is a (covariant) generalization of
the conjugate momenta, as in �at space the normal to the Cauchy surface is given by the
time coordinate (i.e. nµ∂µ = ∂t) and the equations (

eq:comm curv
2.29) coincide with (

eq:comm flat
2.13). It can be

shown that if the canonical equal time commutators hold on one spacelike slice, then they
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do so on any other spacelike slice as well, given that the �eld, φ̂, satis�es the Klein-Gordon
equation.

At this stage in �at spacetime, there was the possibility to expand solutions to the
Klein-Gordon equation in their Fourier basis. In curved spacetime one has to proceed with
caution, as a Fourier decomposition might be ill de�ned. A strategy to circumvent this
problem, is to assume that in the far past spacetime was approximately �at, such that a
basis of solutions once existed. The next step is then to evolve these solutions forward
in time, such that they form a complete basis of solutions in the curved spacetime. The
reason this works, is exactly because the commutation relations are independent of the
spacelike slice S.

De�ning the Klein-Gordon inner product of two (plain-wave) solutions to the Klein-
Gordon equation as

〈
up, up′

〉
= i

ˆ
S
d3x
√
|h|nµ

(
u∗p∂µup′ − up′∂µu∗p

)
, (2.30)

the orthogonality conditions on the basis can be written as

〈
up, up′

〉
= (2π)32p0δ3(~p− ~p′),〈

up, u
∗
p′
〉

= 0,
〈
u∗p, u

∗
p′
〉

= −(2π)32p0δ3(~p− ~p′).
(2.31)

The �eld φ̂ is again the superposition of these solutions and the ap, a
†
p are given by

ap =
〈
up, φ̂

〉
, a†p = −

〈
u†p, φ̂

〉
. (2.32)

The di�erence between quantization in curved spacetime with respect to �at spacetime,
comes from the choice of basis solutions up. In �at spacetime this choice was unique as
there is a timelike Killing vector that advocates a natural choice for the time coordinate. In
curved spacetime, however, there is no such "obvious" choice which has as a consequence
that there is no unique choice for the basis of solutions. As a result, it is not clear what one
perceives as positive/negative frequency modes and the notion of a particle becomes an
ambiguity in itself. Analogous to �at spacetime, the existence of a timelike Killing vector
(e.g. a stationary spacetime)3 gives a natural choice for the basis in curved spacetime
as well. However, this Killing vector might not be well-de�ned globally. In some cases,
one can then perform an analytic continuation to the part of spacetime where the Killing
vector is not well-de�ned. A particularly interesting situation is Rindler spacetime, where
it is exactly this continuation from which the Unruh e�ect can be derived

Crispino:2007eb
[49].

3 E�ective dimension of spacetime as seen by di�usion
sect:spectral

The spectral dimension can be used to probe the possibility of dimensional reduction gen-
erated by various processes. In qauntum gravity, for example, it is a convenient tool to
determine the spacetime dimension as felt by an e�ective �eld theory in the high energy
limit. This concept can be introduced by analyzing the behavior of a test particle undergo-
ing a di�usion process, described by the so called di�usion equation (also known as the heat
equation). To derive the di�usion equation, consider a microscopic system governed by an
ensemble of non-interacting particles submerged into a �uid. As the timescales on which

3If the timelike Killing vector is orthogonal to the Cauchy surface, then the spacetime is static as well.
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the particles move and collide with one-another is signi�cantly smaller than the timescale
on which measurements are performed (i.e. approximately a factor 1012s smaller), the
particles seem to move randomly (that is, subject to Brownian motion). The di�usion
equation is essentially a statistical tool that allows for the description of the movement of
an ensemble of identical particles that share their boundary and initial conditions. In this
context, the solution to the di�usion equation yields a probability distribution rather than
the deterministic value for e.g. the position of a particle. To be more precise, if c(~x, t)
is a solution of the di�usion equation, then c gives the probability distribution to �nd a
particle in a small neighborhood of ~x at a time t.

Rather than immediately evaluating the continuous case, it is instructive to start with
a discussion on discrete random walks, following

Itzykson
[50]. That is, consider an in�nite d-

dimensional lattice in Euclidean space. Each site can be described by a d-dimensional
vector ~x = xi~e(i) where the basis vectors ~e(i) are orthonormal to each other ~e(i) ·~e(j) = δij ,
the xi are integer multiples of the lattice spacing a = 1 (thus the lattice is hypercubic)
and every site has q = 2d neighbors. For a walker moving instantaneously and at random
between neighboring sites, allowing a time interval ∆t = 1 between every move, the prob-
ability of reaching a certain neighboring site is 1

q = 1
2d . Furthermore, the system is set

up such that the walker has no recollection about whether the next site has been visited
previously (i.e. the process is Markovian and does not depend on the history of the walker,
with the exception of the initial site which serves as an initial condition).

Using the initial data (~x0, t0), the conditional probability for a walker to have moved to
site ~x1 at time t1 is given by P (~x1, t1; ~x0, t0)(1,1), where the subscripts refer to the lattice
spacing and timestep. To calculate this probability, �rst note that

P (~x1, t0; ~x0, t0)(1,1) =

d∏

i=1

δxi0xi1
, (3.1)

the probability for a walker to be positioned at sites ~x0 and ~x1 simultaneously. Obviously
the equation above yields 1 for ~x1 = ~x0 and 0 otherwise. Furthermore, the probability for
the walker to be somewhere on the lattice at time t1 > t0 is given by

∑

~x1

P (~x1, t1; ~x0, t0)(1,1) = 1, (3.2)

and yields a normalization condition. Note that due to translation invariance in both time
and space, P only depends on t1 − t0 and x1 − x0. To make the transition to continuous
space, it is bene�cial to relate the probabilities at di�erent times to one another. As the
probability for the walker to be at ~x at time t+ 1 depends on whether at time t the walker
was at ~x± ~ei, a neighbor of ~x, the probabilities can be written as a recurrence relation

P (~x, t+ 1; ~x0, t0)(1,1) =
1

2d

∑

i

P (~x± ~ei, t; ~x0, t0)(1,1). (3.3)
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To see the change in time of the probabilities, subtract P (~x, t; ~x0, t0)

P (~x, t+ 1; ~x0, t0)(1,1) − P (~x, t; ~x0, t0)(1,1)

=
1

2d

d∑

i=1

P (~x± ~ei, t; ~x0, t0)(1,1) − P (~x, t; ~x0, t0)(1,1)

=
1

2d

d∑

i=1

[
P (~x+ ~ei, t; ~x0, t0)(1,1) + P (~x− ~ei, t; ~x0, t0)(1,1)

]
− P (~x, t; ~x0, t0)(1,1)

=
1

2d

d∑

i=1

[
P (~x+ ~ei, t; ~x0, t0)(1,1) + P (~x− ~ei, t; ~x0, t0)(1,1) − 2P (~x, t; ~x0, t0)(1,1)

]

= ∆DP (~x, t; ~x0, t0)(1,1),

(3.4) eq:diffdisc

where ∆D functions as a discrete Laplace operator. As the equation above relates a change
in time to a second order change in position, it is straightforward to generalize this equation
to its continuous equivalent

(
∂t − ∂2

E

)
P (~x, t; ~x0, t0)(1,1) = 0. (3.5) eq:diffcont

That is, the di�usion equation in continuous space. Here ∂E denotes the partial derivative
with respect to to Euclidean space.

To compute the continuous solution, �rst consider the discrete equation (
eq:diffdisc
3.4). Per-

forming a Fourier transformation yields

P (~x, t; ~x0, t0)(1,1) =

ˆ π

−π

dd~k

(2π)d
ei
~k·~xP̃ (~k, t; ~x0, t0)(1,1), (3.6)

which together with

P (~x, t+ 1; ~x0, t0)(1,1) =
1

2d

d∑

i=1

[
P (~x+ ~ei, t; ~x0, t0)(1,1) + P (~x− ~ei, t; ~x0, t0)(1,1)

]
, (3.7)

implies that

P̃ (~k, t+ 1)(1,1) =
1

d

d∑

i=1

cos (ki)P̃ (~k, t; ~x0, t0)(1,1), (3.8)

subject to the boundary condition

P̃ (~k, t0; ~x0, t0)(1,1) = e−i
~k·~x0 or P (~x, t0; ~x0, t0)(1,1) = δd(~x− ~x0). (3.9)

The probability to �nd a particle at time t on site ~x now reads

P (~x, t; ~x0, t0)(1,1) =

ˆ π

−π

dd~k

(2π)d
ei
~k·(~x−~x0)

(
1

d

d∑

i=1

cos(ki)

)t−t0
. (3.10)

The continuum limit in this case is given by taking the lattice spacing and the time interval
between walks to zero. For this purpose, let the lattice spacing be given by a and the time
interval by τ such that

P (~x− ~x0; t− t0)(a,τ) =

ˆ π/a

−π/a

dd~k

(2π)d
adei

~k·(~x−~x0)

(
1

d

d∑

i=1

cos(aki)

) t−t0
τ

. (3.11)
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Dividing by ad (i.e. the volume of a hypercube with an edge length a) and taking the limit,
yields

lim
a,τ→0

P (~x− ~x0; t− t0)(a,τ) = lim
a,τ→0

ˆ π/a

−π/a

dd~k

(2π)d
ei
~k·(~x−~x0)

(
1

d

d∑

i=1

cos (aki)

) t−t0
τ

=

ˆ ∞
−∞

dd~k

(2π)d
ei
~k(~x−~x0)e−

~k2(t−t0)

=
e
− (~x−~x0)2

4(t−t0)

(4π(t− t0))d/2
,

(3.12) eq:Gauss

where the identi�cation τ = a2

2d was made in the expansion

(
1

d

d∑

i=1

cos (aki)

) t−t0
τ

=

(
1− a2

2d
~k2 + . . .

)(t−t0)/τ

,

≈ e−(t−t0)~k2

(3.13)

and it was used that the resulting exponential can be written as

ei
~k(~x−~x0)−~k2(t−t0) = e

− (~x−~x0)2

4(t−t0) e
−(t−t0)

(
~k+

i(~x−~x0)
2(t−t0)

)2

, (3.14)

after which a change of integration variables z2 = (t− t0)
(
~k + i(~x−~x0)

2(t−t0)

)2
yields the desired

result (
eq:Gauss
3.12). For future reference, note that the spatial separation of two sites is a property

intrinsic to the manifold, while the time coordinate, t, is not. In this context t can be
interpreted as the laboratory time i.e. the walk time as measured by an outside observer.
To avoid confusion, de�ne σ ≡ t − t0 = t the so-called �ctitious di�usion time, where t0
was set to 0. The probability can then be written as

P (~x, ~x0;σ) =
e−

(~x−~x0)2

4σ

(4πσ)d/2
, (3.15)

where the subscripts were omitted.
The next step on the road to spectral dimensions is to take a look at the return

probability. That is, the probability that after a given time σ > 0, the walker is yet again
positioned at ~x0

Pr(σ) ≡ P (~x0, ~x0;σ) = (4πσ)−d/2. (3.16)

Note that the return probability is equivalent to taking the trace of P

TrP (~x, ~x0;σ) =

ˆ
dd~x

e−
(~x−~x0)2

4σ

(4πσ)d/2
δd(~x− ~x0) = P (~x0, ~x0;σ). (3.17)

The mathematical de�nition of the spectral dimension, ds, takes the limit σ → 0 such that

ds ≡ −2 lim
σ→0

d lnPr(σ)

d lnσ
. (3.18)

Intuitively one takes the di�usion time, and thus the length of the di�usion path, to zero
such that the length of the path becomes smaller than the radius of curvature. In the
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case of a �at and smooth spacetime, the spectral dimension coincides with the topological
dimension of the manifold, d. Fractal spacetimes are an example where these de�nitions
of dimension do not (necessarily) coincide.

As for the purpose of this thesis it is the �ow of the spectral dimension that is of
interest, an alternative de�nition where one omits the limit is considered

Ds ≡ −2
d lnPr(σ)

d lnσ
. (3.19)

See Sect.
sect.3b
8 for a derivation of Ds in the context of a modi�ed di�erential operator and its

relation to two-point functions.

4 Quantum Gravity models
sect:QG

The purpose of this section is to give a pedagogical introduction to a collection of the-
ories/frameworks within quantum gravity. In Sect.

sect.4
9 these theories will reappear in the

form of examples within the formulation developed in Sect.
sect.2
6 and onwards.

4.1 Causal Sets

One of the attempts to face some of the problems mentioned above above is posed in the
form of causal set theory

Oriti
[51]. Theories within this framework are based upon the path-

integral approach to quantum �eld theory. Loosely said, the path-integral is a sum over
all the histories within a theory and can be used as a quantization procedure. Some of
the necessary ingredients are a history-space and a quantum measure for each collection of
histories. For example, the amplitude to go from a state de�ned by a metric and matter
�eld, g1, φ1 at time t1 to a state at time t2 with metric and matter �eld g2, φ2 is de�ned
as

Hawking
[52]

〈g2, φ2, t2|g1, φ1, t1〉 =

ˆ
D[g]D[φ]eiS[g,φ], (4.1)

where S is the action, D[g], D[φ] a measure on the history-space of all metrics and mat-
ter �elds respectively. It is then apparent that the integral includes all �eld and metric
con�gurations obeying the desired boundary conditions.

The reason this quantization procedure is often favored within quantum gravity can be
granted to the fact that other quantization procedures bring technical and conceptual dif-
�culties. Attempting to directly quantize operators renders the physical interpretation of
the theory non-trivial as a consequence of the complicated structure of the Einstein equa-
tions. Canonical quantization yields the problems mentioned above; splitting spacetime
into spatial and a temporal dimensions contradicts the fundamental principles of relativ-
ity. Nevertheless, the path-integral approach has its own drawbacks, some of which can be
avoided by treating spacetime as a discrete set rather than a continuous manifold. In the
discrete setting the path-integral becomes a sum with a natural short-distance cut-o� at
the Planck-scale. It is this discrete cut-o� that allows one to handle the di�culties arising
from the continuous procedure.

There are numerous discrete approaches under construction at this moment, one of
which is causal set theory. In causal set theory one assumes that a continuous manifold
has an underlying discrete structure, used to determine the history-spaces of a theory. As
the name suggests, the structure of these discrete sets is imposed by the causal ordering of
spacetime points. Given such a causal relation and a Lorentzian manifold, points on this
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manifold form a partially ordered set (poset), satisfying

Transitivity: (∀x, y, z ∈ C) (x ≺ y ≺ z ⇒ x ≺ z)
Irre�exibility: (∀x ∈ C) (x ⊀ x)

Local Finiteness: (∀x, z ∈ C) (card {y ∈ C | x ≺ y ≺ z} <∞).

(4.2)

Here x ≺ y indicates that x is in the causal past of y. Note that the second condition
(irre�exibility) assures that there are no closed causal loops (the manifold is referred to as
weakly causal). The discreteness of the set is assured by the condition of local �niteness
where card C indicates the cardinality4 of the set C. In the causal set context this
demand enforces that there is a �nite number of points between any two points. As a
direct consequence, a causal set can only count a �nite number of elements.

As mentioned before, the classical (low energy/large distance) limit of any quantum
gravity theory should yield general relativity. To assure this, the (in general shared)
view in causal set theory is that some of the considered histories have to be reasonably
well approximated by Lorentzian manifolds. To make this statement more precise, the
principles of embedding need to be invoked. For a causal set, C, to be embedded into a
spacetime, (M, g), the elements of C have to be identi�ed with points in (M, g) and the
order linking these elements is imposed by the causal order of the spacetime. Up till here
no discreteness scale has been introduced yet, which makes it impossible to develop an
adequate procedure for "measuring" volumes. Consequently there is no natural framework
to determine if the density of elements is such that they contain enough causal relations
to be correctly embedded into a given manifold. To resolve this problem, one sprinkles
elements into a region with a given volume. Sprinkling a manifold entails the use of a
Poisson distribution to randomly select a number of points on the manifold. The Poisson
probability distribution is given by

P (n) =
(ρV )n e−ρV

n!
, (4.3)

where n is the number of points, V the volume of a certain region and ρ the sprinkling
density of the Planckian order. Once ρ and n are set, the only input for the Poisson
process is the volume V . If there is a high probability that the causal set could have
been established from sprinkling the manifold, then the manifold approximates the causal
set. The de�nition of a high probability is case sensitive in this context. Note that the
de�nition above naturally implies that the number of elements sprinkled into a given region
correspond to the volume of that region. It is then said that the causal set obeys a faithful
embedding into the manifold.

It is important to realize that not every causal set can be properly embedded into a
manifold. Even more alarming, a causal set that has been faithfully embedded into a cer-
tain region of Minkowski space might no longer satisfy the rules of faithful embedding once
some of the causal relations between points have been changed. An equivalent statement
would be that small �uctuations within the theory change the physical meaning of certain
properties. To remove the importance of these �uctuations, one may invoke the method-
ology of coarse-graining. In essence, coarse-graining a causal set C entails the removal of
some points, yielding a new causal set C ′ with lower density ρ′.

At this point, one might wonder what the bene�ts of causal set theory are. The
manner in which it distinguishes itself from, for example, lattice based theories can be

4Cardinality is a measure for the number of elements/points contained in a set
4The theory might even be rendered unphysical if it no longer satis�es the classic limit.
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captured within the occurrence of local Lorentz invariance. In the discussion above, a lot
of attention was granted to de�ning a causal set in such a way that (the sprinklinf of) a
manifold can be thought of as an approximation to said causal set. This suggests that if one
considers Minkowski spacetime, the discrete theory assigned to its microscopic structure
should be such that it does not impose violation of Lorentz invariance upon the continuous
manifold. In other words, the underlying discrete theory is not permitted to invoke a
preferred reference Lorentz frame. It is not hard to imagine that a lattice based theory
would do exactly this, as its particular structure violates rotational invariance. In the case
of causal sets, however, the elements/points have been distributed randomly, leaving the
approximating Minkowskian manifold without a preferred frame.

4.2 Spectral Actions

A frequently used approach to various calculations involving manifolds and their geometries
comes from the principle of spectral actions

petitot
[53]

Chamseddine:1996zu
[54]. In this approach, the geometry of a

Manifold M is described through a spectral triple consisting of an involutive algebra A, a
Hilbert space H and an unbounded, selfadjoint, Dirac operator D living on H. The inverse
of the Dirac operator D can be used to construct the line element5 ds and an involutive
algebra (∗-algebra) is an algebra A with a conjugate linear map ∗ : A 7→ A such that
(ab)∗ = b∗a∗ and (a∗)∗ = a.

For a Riemannian compact spin manifold, the spectral triple is given by the A =
C∞(M) of continuous, in�nitely di�erentiable functions on M , a spin-manifold H =
L2(M,X) of L2-spinors and D is the Dirac operator of the Levi-Cevita spin connection.
Intuitively, a spin-manifold allows for the de�nition of spinor bundles which in their turn
associate a spin representation to every point on M of which the elements are spinors. For
a mathematically precise de�nition of spin geometries see chapter 4 of

vanSuijlekom:2015iaa
[55]. The points

on the manifold, M , are characters of A (hence the trace over the representation ϕ of the
algebra A) which can be recognized as homomorphisms ρ : A → C.

To de�ne a notion of distance, the metric needs to be de�ned. For a Riemannian
manifold, the line-element squared is expanded in the local coordinates to �nd the standard
form

ds2 = gµνdx
µdxν , (4.4)

such that the distance between two points (x, y) is given by

d(x, y) = Inf

ˆ
γ
ds, (4.5)

that is, the length of the shortest path between x and y. In the language of commutative
geometry the distance between two points is given by

d(x, y) = Sup{|f(x)− f(y)|; f ∈ A, ‖ [D, f ] ‖≤ 1}. (4.6)

One of the bene�ts of the spectral triple approach, is that the physical action only
depends on the spectrum Σ ⊂ R of the Dirac operator D. As an example, one can study
the standard model

Chamseddine:1996zu,Chamseddine:1996rw
[54, 56], also see

MarcolliBook,vandenDungen:2012ky,vanSuijlekom:2015iaa
[57, 58, 55] for reviews.

Let S denote the action of the standard model and gravity (i.e. including the cou-
pling between gravity and matter), then there are certain symmetries that need to be
taken into account. The total action has to be invariant under the group of di�eomor-
phisms of a particular manifold M , denoted by Di�(M), and under the group G of gauge

5For a Riemannian manifold, D2 ∝ ∇2, the d-dimensional Laplacian
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transformations working on the matter-part of the action. Letting G work on M , one
obtains a mapping from M to a smaller gauge group G which can be readily identi�ed
as G = SU(3) × SU(2) × U(1), the group describing the Standard Model. To �nd the
full symmetry group of S, it is necessary to de�ne the concept of (inner) automorphisms
Aut(A). An automorphism can be seen as a symmetry of an object that maps the object
to itself without altering its structure. In that sense the automorphism of an object is an
isomorphism with respect to the object itself. A di�eomorphism can then be seen as an
automorphism a ∈ Aut(A) of the coordinate algebra. In fact, for the standard model it
is the inner automorphism of A that corresponds to internal symmetries while the outer
automorphism (the quotient Aut(A)/Inn(A)) correspond to di�eomorphisms. With this
in mind, the full group of symmetries V is given by the outer semidirect product between
G and Di�(M)

V = G oDi�(M). (4.7)

Where the outer semidirect product can be obtained from the direct product, by considering
a group A and two subgroups A1, A2 that satisfy

A1 and A2 are normal in A,

A1 ∩A2 = 1,

A1A2 = A.

(4.8)

Then A is isomorphic to the direct product A1×A2. The semi-direct product is constructed
by taking A2 such that it is not normal in A, consequently elements from A1 and A2 do not
necessarily commute (if they do, then the semi-direct product becomes a direct product).
A second demand on semidirect products is the existence of a homomorphism from A2 to
the group of automorphisms of A1

φ : A2 → Aut(A1). (4.9)

Assuming the demands above are satis�ed, one can write

A = A1 oA2. (4.10)

The question is now whether there is a space that directly obeys the symmetry group V.
As it turns out, there is no such commutative space but there are almost-commutative
spaces that satisfy this demand.

For a given symmetry group, determining the algebra A comes down to �nding an
algebra for which the automorphisms on H are such that Aut(A) = V. In other words, the
algebra has to respect the (total) symmetry group of the theory. For the standard model
A is found to be

A = C∞(M)⊗AF , (4.11)

where AF is a �nite dimensional algebra. The Hilbert space and Dirac operator belonging
to this algebra can be found by exploiting the (tensor product) structure of A

H = L2(M,X)⊗HF and D = /∂M ⊗ 1 + γ5 ⊗DF , (4.12)

where HF and DF are the Hilbert space and Dirac operator on the �nite space. Similarly,
L2(M,X) and /∂M refer to the corresponding quantities of the manifold M .

Leaving out neutrino mixing, the algebra AF describes the underlying geometrical
de�nition of the standard model. It turns out that the (inner) �uctuations of the metric will
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give rise to the gauge bosons, and thus one replaces the Dirac operator D by a �uctuating
Dirac operator that will be denoted as D̃2 = −(∇2 − E), where E is an endomorphism
capturing the particle content of the theory. This new expression D̃ is a result from the
fact that the connection ∇ is not unique on the vector bundle. The fermionic part of the
action can be written as SF (ψ,A) = 〈ψ, D̃ψ〉 where ψ denotes the fermion �eld. For the
purpose of this thesis only the bosonic (scalar) action is required, and thus the fermionic
action will not be discussed further (see Sect.

sect.44
9.3). The bosonic action is given by

SB(D̃) = Tr(χ(D̃2/Λ2)), (4.13)

where Λ is the typical scale of the theory and χ a positive, even function from R to
R such that the operator χ(D̃2/Λ2) decays at ±∞. The bosonic action has to respect
di�eomorphism invariance (the fermionic as well for that matter). Only the eigenvalues of
the Dirac operator satisfy this condition à priori, and thus it seems only natural that the
bosonic action yields functions of those eigenvalues that are below the characteristic scale
Λ.

4.3 Kaluza-Klein theories
sect:KKtheories

In the �rst half of the 20th century, Kaluza noticed that a �ve-dimensional spacetime can be
constructed by a four-dimensional metric coupled to a scalar �eld and the electromagnetic
vector potential

Bailint
[59]. Using this setup, Kaluza was able to derive the four-dimensional �eld

equations, describing gravity, electromagnetism and a scalar �eld. There was, however, a
drawback to this theory. Kaluza had to enforce the so-called cylinder condition, which
essentially states that the four-dimensional metric has to be independent of the extra �fth
dimension. As this imposed a rather extreme symmetry, the physics community started
looking for an alternative description of this �fth dimension. It was Klein that justi�ed
Kaluza's ansatz by suggesting to make the �fth dimension periodic and very small (e.g. he
introduced the concept of compacti�cation).

In Kaluza-Klein theory, the �fth dimension is taken to be a circle with a very small cir-
cumference (radius) such that the metric essentially does not depend on the �fth coordinate
x5. More concretely, the �ve-dimensional manifold can by written as

M(5) =M(4) × U(1). (4.14)

As the �fth dimension is compact (i.e. it is the circle group), this approach was named
compacti�cation and is nowadays frequently applied in string theory. Using the fact that
the metric is now periodic in the �fth dimension, the metric can be decomposed into its
Fourier modes as

g̃AB(x, x5) =
∞∑

−∞
g

(n)
AB(x)einx

5/R, x5 ∈ [0, 2πR], (4.15)

where, the indices A, B run from 0 to 4, n denotes the Fourier mode and R is the com-
pacti�cation radius. Any �elds living on this �ve-dimensional manifoldM5 obey a Fourier
decomposition in the circle coordinate similar to the metric �eld.

φ(x, x5) =

+∞∑

n=−∞
φn(x) ei

n
R
x5 , x5 ∈ [0, 2πR] . (4.16) eq:KK

The Fourier coe�cients φn(x) depend on the coordinates on R4 and are called Kaluza-Klein
modes. For a real scalar �eld φ they obey the reality condition φ−n = φ∗n. Substituting
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this mode expansion into the action of a free scalar �eld in �ve dimensions yields

ˆ
d5x 1

2

[
(∂µφ)2 − (∂5φ)2

]
= 2πR

ˆ
d4x

+∞∑

n=−∞

1
2

[
|∂µφn|2 −

n2

R2
|φn|2

]
. (4.17)

In Sect.
sect.43
9.2 the model above will be examined more closely, yielding the two-point function

and properties derived thereof.

5 The Unruh e�ect
sect:unruh

The notion of an observer, accelerating with respect to the Minkowski vacuum, observing
a thermal spectrum of particles is known as the Unruh e�ect. The key to understanding
this e�ect is the di�erence between the de�nitions of positive frequency modes and thus
the interpretation of particles. Here we will derive the Unruh e�ect for a massless and
massive scalar �eld in 1 + 1-dimensions

Mukhanov:2007zz
[41]. The generalization to 3 + 1 dimensions can

be found in Sect.
sect.Unruh effect
5.2.

The derivation starts by considering an inertial observer in Minkowski spacetime and
parameterizing the observer's trajectory in terms of its proper time. Likewise, the trajec-
tory of an observer accelerating through Minkowski spacetime (i.e. an inertial observer
in Rindler spacetime) will be parametrized in terms of the accelerated observer's proper
time. Of course, strictly speaking, Rindler spacetime is simply (a patch of) Minkowski
spacetime written in a di�erent (accelerated) coordinate frame. Hence, Rindler spacetime
is �at. It is then due to Einstein's equivalence principle that the accelerated frame exhibits
traits similar to as if it was positioned in a gravitational �eld (e.g. the existence of an
horizon becomes apparent). Once the parameterizations have been established, one can
apply second quantization and �nd the scalar �elds expanded in Minkowski and Rindler
modes. As the two trajectories are related, the resulting (quantized) �elds describe the
same scalar �eld and are thus the same. The di�erence between the two descriptions lies
in the de�nition of creation/annihilation operators and thus their vacua. By expressing
the creation/annihilation operators belonging to one description in terms of the other, the
di�erences concerning particle interpretation become clear. This is what is known as a
Bogolyubov transformation.

5.1 1+1 dimensions
sect:unruh1

In two dimensions the Minkowski metric is given by

ds2 = dt2 − dx2. (5.1) eq:metric2d

For an observer following a trajectory xα(τ), where τ is the proper time used to parametrize
this trajectory, the 2-velocity is given by

ẋα(τ) =
dxα(τ)

dτ
=
(
ṫ(τ), ẋ(τ)

)
(5.2)

and normalised such that
ηαβẋ

αẋβ = 1. (5.3) eq:velocity

The 2-acceleration is then aα = ẍα(τ) and satis�es

ηαβa
αẋβ = 0. (5.4) eq:velacc
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In the inertial frame of the observer undergoing constant acceleration, we have ẋ(τ) = 0
and thus ẋα(τ) = (1, 0). It can then be deduced from (

eq:velacc
5.4) that aα(τ) = (0, a) with a a

constant. In any inertial frame we �nd then

ηαβa
α(τ)aβ(τ) = −a2. (5.5)

To determine the trajectory of an accelerated observer we �rst switch to lightcone coordi-
nates, de�ned in the inertial frame as

u ≡ t− x, v ≡ t+ x (5.6) eq:lightcone

which transforms (
eq:metric2d
5.1) into

ds2 = dudv = gαβdx̃
αdx̃β (5.7)

where x̃0 ≡ u, x̃1 ≡ v and the Minkowski metric in lightcone coordinates is

gαβ =

(
0 1/2

1/2 0

)
. (5.8) eq:metriclightcone

The trajectory can then be expressed in lightcone coordinates as

xα(τ) = (u(τ), v(τ)), (5.9)

which, together with gαβ , (
eq:velocity
5.3) and (

eq:velacc
5.4), yields

u̇(τ)v̇(τ) = 1,

ü(τ)v̈(τ) = −a2.
(5.10) eq:relationuv

The �rst of these two equations gives u̇ = 1
v̇ and thus ü = − v̈

v̇2 , such that the second
equation can be used to obtain (

v̈

v̇

)2

= a2. (5.11)

Integration of the equation above gives the following solution for v(τ)

v(τ) =
A

a
eaτ +B → v(τ) =

1

a
eaτ , (5.12)

where the integration constantsA, B have been put to one and zero by performing a Lorentz
transformation and shifting the origin respectively. To �nd u(τ) we use the relation u̇ = 1

v̇

u(τ) = − 1

Aa
e−aτ + C → u(τ) = −1

a
e−aτ . (5.13) eq:defu

The trajectory of the inertial observer has now been fully parametrized in terms of τ .
Next we will look for the comoving frame of an accelerated observer in terms of the

coordinates (ξ0, ξ1). The coordinate system should be de�ned such that at ξ1 = 0 the
observer is at rest and along the observer's worldline the time coordinate ξ0 should coincide
with the proper time τ . To make �eld quantization easier later on, we also want the metric
in the comoving frame to be conformally �at, that is

ds2 = χ2(ξ0, ξ1)
[
(dξ0)2 − (dξ1)2

]
, (5.14) eq:metricconformal

where χ(ξ0, ξ1) will be found by imposing proper conditions later on. Similar to the
derivation for the inertial observer, the lightcone coordinates are de�ned as

ũ ≡ ξ0 − ξ1, ṽ ≡ ξ0 + ξ1 (5.15)
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such that (
eq:metricconformal
5.14) becomes

ds2 = χ2(ũ, ṽ)dũdṽ. (5.16)

In the comoving frame one has ξ0 = τ and ξ1 = 0, yielding for the worldline

ṽ(τ) = τ, ũ(τ) = τ (5.17)

and the conformal factor along this worldline

dτ2 = ds2 = χ2(ũ = τ, ṽ = τ)dτ2 (5.18)

gives
χ2(ũ = τ, ṽ = τ) = 1. (5.19) eq:Omega

Using that physics should be coordinate independent (e.g. di�eomorphism invariance
holds), the metric can be written as

ds2 = dudv = χ2(ũ, ṽ)dũdṽ. (5.20) eq:unruhmetric

Note that there are no dũ2 and dṽ2 terms appearing in the equation above, thus u and v
only depend on one of the coordinates ũ or ṽ. Choosing u = u(ũ) and v = v(ṽ) gives the
exact form of these functions by considering

du(τ)

dτ
=
du(ũ)

dũ

dũ(τ)

dτ
. (5.21)

Using partial di�erentiation and

du(τ)

dτ
= −au(τ) and

dũ(τ)

dτ
= 1, (5.22)

yields
du(ũ)

dũ
= −au, (5.23)

and thus
u = Ce−aũ. (5.24)

Similarly
v = Deaṽ. (5.25)

Then the integration constants C and D from (
eq:Omega
5.19) become

1 = χ2(ũ = τ, ṽ = τ)

=
du

dũ

dv

dṽ

∣∣∣∣
ũ=τ,ṽ=τ

= −a2CDe−aτeaτ

= −a2CD.

(5.26)

Hence

u = −1

a
e−aũ, v =

1

a
eaṽ. (5.27) eq:RindlerCoord

The line element in the accelerated frame can now be written as

ds2 = ea(ṽ−ũ)dũdṽ = e2aξ1 [
(dξ0)2 − (dξ1)2

]
. (5.28) eq:rindler2dmetric
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Figure 5: Minkowski spacetime in Rindler coordinates.fig:Rindler

This is the metric on Rindler spacetime. Note that by expressing the inertial Minkowski
coordinates (t, x) in terms of the Rindler coordinates (ξ0, ξ1) one obtains

t =
1

2
(u+ v) =

1

a
eaξ

1
sinh (aξ0),

x =
1

2
(−u+ v) =

1

a
eaξ

1
cosh (aξ0),

(5.29) eq:MinkInRind

where the Rindler coordinates have ranges −∞ < ξ0, ξ1 <∞.
From �gure

fig:Rindler
5 one can see that a Rindler observer, moving on a trajectory with ξ1 =

const, never crosses the Killing horizons located at ξ0 = ±∞. As a result, the observer is
con�ned to the right Rindler wedge. Referring back to Sect.

sec:curved spacetime
2.2, the constant ξ0 surfaces

are Cauchy surfaces, i.e. Rindler spacetime is globally hyperbolic. It is this property that
will allow the introduction of equal-time commutators needed to quantize the scalar �elds
in the following sections.

5.1.1 Massles scalar �eld

The current task at hand is to quantize a scalar �eld in Rindler/Minkowski spacetime.
To do this we will need to de�ne which modes register as positive/negative frequency
modes in both the inertial as well as the accelerated frame. An inertial observer would
de�ne positive/negative modes with respect to the Minkowski time coordinate t, while
an accelerated observer would use the time coordinate τ = ξ0. As the line elements are
related by a conformal transformation, we will see that a mode registering as a positive
frequency mode for an inertial observer registers in the accelerated frame as a superposition
of positive and negative frequency modes.
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In the case of a massless scalar �eld in 1 + 1-dimensions the action is given by

S =
1

2

ˆ
d2x
√
−ggαβφ,αφ,β, (5.30) eq:action2d

where d2x = dtdx. As the inertial and accelerated frame are conformally related the
Lagrangian as well as the action are left invariant under this particular change of coordinate
system. That is

dtdx
√
−ggαβ = dξ0dξ1

√
−g′g′αβ

= dξ0dξ1
(
χ2√−g

) (
χ−2gαβ

)
= dξ0dξ1√−ggαβ.

(5.31)

Rewriting (
eq:action2d
5.30) in terms of (u, v) and (ũ, ṽ) yields

S = 2

ˆ
dudv∂uφ∂vφ = 2

ˆ
dũdṽ∂ũφ∂ṽφ, (5.32)

where the factor of 4 = 22 with respect to (
eq:action2d
5.30) arises from the inverse of (

eq:metriclightcone
5.8). As we

are dealing with a massless scalar �eld without any form of interaction, the equations of
motion become ∂α

∂L
∂(∂αφ) = 0 and thus

∂u∂vφ = 0 and ∂ũ∂ṽφ = 0. (5.33) eq:unruh2deqm

The solutions to these equation are straightforward to compute and we write them as

φ(u, v) ∝ e−iωu + e−iωv and φ(ũ, ṽ) ∝ e−iΩũ + e−iΩṽ. (5.34)

Here, the modes φ ∝ e−iωu and φ ∝ e−iΩũ describe right moving, positive frequency
modes with respect to t and τ . Likewise, the left moving parts of the solutions is given by
φ ∝ e−iωv and φ ∝ e−iΩṽ. Where, Ω ∈ [0,∞], in what follows can be interpreted as the
frequency corresponding to a speci�c mode in Rindler spacetime.

Now that the solutions to the equations of motion have been found, the �eld φ can be
written as an operator φ̂. Suppressing the left moving part of the solutions, the �elds have
the following mode expansion

φ̂ =

∞̂

0

dω

(2π)1/2

1√
2ω

(
e−iωuâω + eiωuâ†ω

)

=

∞̂

0

dΩ

(2π)1/2

1√
2Ω

(
e−iΩũb̂Ω + eiΩũb̂†Ω

)
.

(5.35) eq:unruhphi

The creation and annihilation operators satisfy the bosonic commutation relations where

[
âω, â

†
ω′

]
= δ(ω − ω′),

[
b̂Ω, b̂

†
Ω′

]
= δ(Ω− Ω′), (5.36) eq:commboson

are the only non-zero commutators. To �nd the number of particles an observer accelerating
with respect to Minkowski spacetime (Rindler observer) would observe in the Minkowski
vacuum, we need to let the number operator de�ned in Rindler spacetime work on the
Minkowski vacuum. That is

〈
N̂Ω

〉
≡ 〈0M | b̂†Ωb̂Ω |0M 〉 , (5.37) eq:numberop
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where |0M 〉 denotes the Minkowski vacuum and |0R〉 the Rindler vacuum. The vacua are
de�ned such that

âω |0M 〉 = 0, b̂Ω |0R〉 = 0. (5.38)

To evaluate the number operator, the creation/annihilation operators b̂†Ω and b̂Ω need to be

expressed in terms of â†ω and âω. By doing so it will become apparent that the Minkowski
and Rindler observer do not share the same vacuum.

The relation between the creation/annihilation can be found through the use of Bo-
golyubov transformations of the form6

b̂Ω =

∞̂

0

dω
[
αΩωâω − βΩωâ

†
ω

]
. (5.39) eq:Bogolyubov

From the commutation relations (
eq:commboson
5.36) the normalization of the Bogolyubov coe�cients

becomes
[
b̂Ω, b̂

†
Ω′

]
=

∞̂

0

dω(αΩωα
∗
Ω′ω − βΩωβ

∗
Ω′ω) = δ(Ω− Ω′). (5.40)

By substitution of (
eq:Bogolyubov
5.39) into (

eq:unruhphi
5.35) the coe�cient of âω is computed as

1√
ω
e−iωu =

∞̂

0

dΩ′√
Ω′

(
αΩ′ωe

−iΩ′ũ − β∗Ω′ωeiΩ
′ũ
)
. (5.41)

Multiplying through with e±iΩũ, where Ω > 0, and integrating over ũ results in

∞̂

−∞

dũ
1√
ω
e−iωu±iΩũ =

∞̂

−∞

dũ

∞̂

0

dΩ′√
Ω′

(
αΩ′ωe

−iΩ′ũ±iΩũ − β∗Ω′ωeiΩ
′ũ±iΩũ

)

=

∞̂

−∞

dũ

∞̂

0

dΩ′√
Ω′

(
αΩ′ωe

i(±Ω−Ω′)ũ − β∗Ω′ωei(±Ω+Ω′)ũ
)

=

∞̂

0

dΩ′√
Ω′

(
αΩ′ω2πδ(±Ω− Ω′)− β∗Ω′ω2πδ(±Ω + Ω′)

)

(5.42)

Note that the integral over Ω′ runs from 0 to ∞ and thus, for one particular choice of Ω,
can only be non-zero for either αΩ′ω or β∗Ω′ω but not both. Choosing the +Ω solution one
�nds

∞̂

−∞

dũ
1√
ω
e−iωu+iΩũ =

2π√
Ω
αΩω, (5.43)

which can be solved for αΩω

αΩω =
1

2π

√
Ω

ω

∞̂

−∞

dũe−iωu+iΩũ. (5.44)

6As the Rindler coordinates only cover the x > |t| quarter of Minkowski spacetime, this mapping is
surjective (onto) but not injective (one-to-one). That is, the inverse mapping is not de�ned.
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Using that ∂ũ
∂u = 1

au and the logarithm is only de�ned between 0 and +∞, this integral
can be carried out analytically

αΩω =
1

2π

√
Ω

ω

∞̂

0

du
1

au
e−iωue

iΩ
a

ln (au)

=
1

2π

√
Ω

ω

0ˆ

−∞

du(−au)
−iΩ
a
−1eiωu

=
1

2πa

√
Ω

ω
e
πΩ
2a

(ω
a

) iΩ
a

Γ

(
− iΩ
a

)
.

(5.45) eq:alpha

The computation of β∗Ω′ω follows a similar reasoning and yields

β∗Ωω = − 1

2πa

√
Ω

ω
e−

πΩ
2a

(ω
a

) iΩ
a

Γ

(
− iΩ
a

)
. (5.46)

Note that αΩω and βΩω satisfy the relation

|αΩω|2 = e
2πΩ
a |βΩω|2 . (5.47) eq:alphabeta

The last step is to compute the number of particles detected by an accelerated observer,
using the formula (

eq:numberop
5.37)

〈
N̂Ω

〉
=

ˆ
dωβωΩβ

∗
ωΩ′

=

√
ΩΩ′

4π2a2
e−

π
2a

(Ω+Ω′)Γ

(
− iΩ
a

)
Γ

(
iΩ′

a

)ˆ
dω

ω

(ω
a

) i
a

(Ω−Ω′)

=

√
ΩΩ′

4π2a2
e−

π
2a

(Ω+Ω′)Γ

(
− iΩ
a

)
Γ

(
iΩ′

a

)ˆ
dω

ω
e
i
a

(Ω−Ω′) ln (ωa ).

(5.48)

The integral above can be easily solved by making a change of integration variables y =
ln
(
ω
a

)
〈
N̂Ω

〉
=

√
ΩΩ′

4π2a
e−

π
2a

(Ω+Ω′)Γ

(
− iΩ
a

)
Γ

(
iΩ′

a

) ˆ
dye

i
a

(Ω−Ω′)y

=

√
ΩΩ′

2πa
e−

π
2a

(Ω+Ω′)Γ

(
− iΩ
a

)
Γ

(
iΩ′

a

)
δ(Ω− Ω′),

(5.49)

selecting the Ω′ = Ω then gives

〈
N̂Ω

〉
=

Ω

2πa
e−

πΩ
a

∣∣∣∣Γ
(
− iΩ
a

)∣∣∣∣
2

δ(0)

=
Ω

2πa
e−

πΩ
a

aπ

Ω sinh
(
πΩ
a

)δ(0)

=
e−

π
a

Ω

2 sinh
(
πΩ
a

)δ(0)

=
(
e

2πΩ
a − 1

)−1
δ(0).

(5.50)
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Here it was used that Γ(ix) = 1
ixΓ(1 + ix) and |Γ(1 + ix)|2 = x π

sinh (πx) . The divergent δ(0)
term is a consequence of the in�nite volume of space and can be divided out, yielding the
mean number-density

〈n̂〉 =

〈
N̂Ω

〉

V
=
(
e

2πΩ
a − 1

)−1
(5.51)

From the calculation above, it is apparent that the observed radiation spectrum follows
the Bose-Einstein distribution with temperature T = a

2π .

5.1.2 Massive scalar �eld

The procedure above can be applied to a massive scalar �eld as well. In this case the action
for an inertial observer becomes

St =
1

2

ˆ
dtdx

[
(φ,t)

2 − (φ,x)2 −m2φ2
]

(5.52)

and for an accelerated observer

Sτ =
1

2

ˆ
dξ0dξ1

[(
φ,ξ0

)2 −
(
φ,ξ1

)2 − e2aξ1
m2φ2

]
. (5.53)

Note that due to the mass term the actions are no longer conformally related. The equation
of motion for the inertial observer becomes

(
∂2
t − ∂2

x +m2
)
φ(x, t) = 0 (5.54)

which has as solution
φ(x, t) ∝ e−ipµxµ (5.55)

where xµ = (t, x), pµ = (p0, p1), p0 =
√
p2

1 +m2 and we only wrote the right-moving part
of the solution. Quantizing this solution yields

φ̂(t, x) =

ˆ
dp1

(2π)1/2

1√
2p0

(
âp0e

−ipµxµ + â†p0
eip

µxµ
)
. (5.56)

For the accelerated observer we need to solve
(
∂2
ξ0 − ∂2

ξ1 + e2aξ1
m2
)
φ(ξ0, ξ1) = 0, (5.57) eq:unruh2dmasseom

where the factor e2aξ1
comes from the metric (

eq:rindler2dmetric
5.28). Following

Crispino:2007eb
[49] we can apply separation

of variables and write φ(ξ0, ξ1) = fq0(ξ1)e−iq0ξ
0
, with q0 a positive constant, such that the

equation above becomes
(
−q2

0 − ∂2
ξ1 + e2aξ1

m2
)
fq0(ξ1) = 0. (5.58) eq:mass2dKG

For ξ1 → −∞ the solutions fq0(ξ1) will start to rapidly oscillate as e±iq0ξ
1
and for ξ1 → +∞

they will approach zero. In the �rst case we can approximate fq0(ξ1) for ξ1 → −∞ as

fq0(ξ1) ≈ 1√
2π

(
ei(q0ξ

1+ε(q0)) + e−i(q0ξ
1+ε(q0))

)
, (5.59)

with ε(q0) a real constant. This leads to the normalization condition

∞̂

−∞

dξ1f∗q0(ξ1)fq′0(ξ1) = δ(q0 − q′0). (5.60)
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Together with (
eq:unruh2dmasseom
5.57) the equation above yields the solutions

fq0(ξ1) =

√
2q0 sinh

(πq0
a

)

π2a
K iq0

a

(m
a
eaξ

1
)
, (5.61) eq:unruh2dmasssol

where K iq0
a

(
m
a e

aξ1
)
is the modi�ed Bessel function. Thus

φ(ξ0, ξ1) =

√
2q0 sinh

(πq0
a

)

π2a
K iq0

a

(m
a
eaξ

1
)
e−iq0ξ

0
. (5.62)

Quantisation of φ(ξ0, ξ1) gives

φ̂(ξ0, ξ1) =

∞̂

0

dq0

(2π)1/2

1√
2q0

(
b̂q0fq0e

−iq0ξ0
+ b̂†q0f

∗
q0e

iq0ξ0
)
. (5.63)

The next step is to write both φ̂(ξ0, ξ1) and φ̂(t, x) in terms of the lightcone coordinates.
Noting that the Bogoliubov coe�cients are independent of the coordinates, one can choose
a convenient point in spacetime to perform the evaluation of the �elds. To simplify the
integrals observe that on the future Killing horizon, where t = x and |t| > 0 one has
t = u+v

2 = v
2 and thus

φ̂(t, x)
t=x
====

ˆ
dp1

(2π)1/2

1√
2p0

(
âp0e

−i(−p0+p1) v
2 + â†p0

ei(−p0+p1) v
2

)
. (5.64)

Also, for ξ1 → −∞ the modi�ed Bessel function can be approximated such that

fq0(ξ1) =

√
2q0 sinh

(πq0
a

)

π2a
K iq0

a

(m
a
eaξ

1
)

=

√
2q0 sinh

(πq0
a

)

π2a

iπ

2 sinh (πq0a )




(
m
2ae

aξ1
) iq0

a

Γ
(

1 + iq0
a

) −

(
m
2ae

aξ1
)−iq0

a

Γ
(

1− iq0
a

)




=
i
√
q0√

2a sinh (πq0a )



(
m
2a

) iq0
a eiq0ξ

1

Γ
(

1 + iq0
a

) −
(
m
2a

)−iq0
a e−iq0ξ

1

Γ
(

1− iq0
a

)


 .

(5.65)

Leaving out the expression b̂†q0 to lighten the derivation, the expression for the �eld in
terms of Rindler coordinates becomes

φ̂(ξ0, ξ1) =

ˆ
dq0

(2π)1/2

1√
2q0

i
√
q0√

2a sinh (πq0a )



(
m
2a

) iq0
a eiq0ξ

1

Γ
(

1 + iq0
a

) −
(
m
2a

)−iq0
a e−iq0ξ

1

Γ
(

1− iq0
a

)


 b̂q0e−iq0ξ

0

=

ˆ
dq0

(4π)1/2

i√
2a sinh (πq0a )



(
m
2a

) iq0
a e−iq0ũ

Γ
(

1 + iq0
a

) −
(
m
2a

)−iq0
a e−iq0ṽ

Γ
(

1− iq0
a

)


 b̂q0 .

(5.66)
However, for ξ1 → −∞ we have −ũ = −(ξ0 − ξ1)→ −∞, and thus e−iq0ũ → 0, leaving

φ̂(ξ0, ξ1) = −
ˆ

dq0

(4π)1/2

i√
2a sinh (πq0a )

(
m
2a

)−iq0
a

Γ
(

1− iq0
a

)e−iq0ṽ b̂q0 . (5.67)
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If we now follow the same procedure as in the previous section (i.e. plug in the Bogolyubov
transformation (

eq:Bogolyubov
5.39), multiply through with exp (iq0ṽ) and integrate over ṽ) we �nd

ˆ
dṽ√
8π2p0

ei(p0+p1) v
2

+iq0ṽ = −
ˆ

dq′0i
√
π√

2a sinh (
πq′0
a )

(
m
2a

)−iq′0
a

Γ
(

1− iq′0
a

)
[
αq′0p0

δ(q′0 − q0)− β∗q′0p0
δ(q′0 + q0)

]
.

(5.68)
Focusing on α �rst we �nd

αq0p0 =
i
√
a sinh (πq0a )Γ

(
1− iq0

a

)

(
m
2a

)−iq0
a

ˆ
dṽ√
4π3p0

ei(p0+p1) v
2

+iq0ṽ

=
i
√
a sinh (πq0a )Γ

(
1− iq0

a

)

(
m
2a

)−iq0
a

ˆ
dv√
4π3p0

(av)−1+
iq0
a ei

p0−p1
2

v
2

=
i
√
a sinh (πq0a )Γ

(
1− iq0

a

)

(
m
2a

)−iq0
a
√

4π3p0

Γ
(
iq0
a

)

a

(
i
p0 − p1

2a

)−iq0
a

=
e
πq0
2a√

4πap0 sinh
(πq0
a

)
(
p0 + p1

p0 − p1

)− iq0
2a

,

(5.69) eq:unruh2dmassalpha

where it was used again that

Γ

(
iq0

a

)
Γ

(
1− iq0

a

)
=

a

iq0
Γ

(
1− iq0

a

)
Γ

(
1 +

iq0

a

)
=

π

i sinh
(πq0
a

) , (5.70)

and ic = e
iπc
2 , m =

√
(p0 + p1)(p0 − p1).

Likewise the solution for βq0p0 is found to be

βq0p0 = − e−
πq0
2a√

4πap0 sinh
(πq0
a

)
(
p0 + p1

p0 − p1

)− iq0
2a

, (5.71)

such that the number operator (
eq:numberop
5.37) becomes

〈
N̂q0

〉
=

ˆ
dp1βp0q0β

∗
p0q′0

=
e−

π
2a

(q0+q′0)

4πa
(

sinh
(πq0
a

)
sinh

(
πq′0
a

))1/2

ˆ
dp1

p0
e
− i

2a
(q0−q′0) ln

(
p0+p1
p0−p1

)
.

(5.72)

Similar to the massless case, this integral can be solved by making a change of variables

y = 1
2 ln

(
p0+p1

p0−p1

)
such that dp1 = p0dy and hence

〈
N̂q0

〉
=

e−
π
2a

(q0+q′0)

4πa
(

sinh
(πq0
a

)
sinh

(
πq′0
a

))1/2

ˆ
dye−

i
a

(q0−q′0)y

=
e−

π
2a

(q0+q′0)

2
(

sinh
(πq0
a

)
sinh

(
πq′0
a

))1/2
δ(q0 − q′0),

(5.73)
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taking q′0 = q0 the number density becomes

〈n̂〉 =

〈
N̂q0

〉

V
=
(
e

2πq0
a − 1

)−1
, (5.74)

the Bose-Einstein distribution with temperature a
2π . It can then be concluded that the

number-operator has the exact same form regardless of the mass of the scalar �eld.

5.2 3+1 dimensions
sect.Unruh effect

To make the step to (3+1) dimensions we �rst have to rede�ne the inertial and accelerated
frame. The Minkowski metric in 3+1 dimensions becomes

ds2 = dt2 − dx2 − dy2 − dz2, (5.75)

and the normalization conditions in 3+1 dimensions di�er from (
eq:velocity
5.3) and (

eq:velacc
5.4) only in the

sense that α and β now run from 0 to 3. Putting the accelerated trajectory in the t, x-plane
such that uα(τ) = (1, 0, 0, 0) and aα(τ) = (0, a, 0, 0) (thus the acceleration is captured by
the x(τ) coordinate) the metric in lightcone coordinates (

eq:lightcone
5.6) becomes

ds2 = dudv + dy2 + dz2 = gαβdx
αdxβ, (5.76) eq:metric4d

where now

gαβ =




0 1/2 0 0
1/2 0 0 0
0 0 1 0
0 0 0 1


 . (5.77)

The trajectory in lightcone coordinates can then be written as xα(τ) = (u(τ), v(τ), 0, 0)
and equations (

eq:relationuv
5.10) through (

eq:defu
5.13) still hold. In 1 + 1-dimensions we moved on from

here to de�ning a comoving frame for the accelerated observer in terms of the coordinates
(ξ0, ξ1). In the 3 + 1-dimensional case we have coordinates (ξ0, ξ1, ξ2, ξ3). However, as the
acceleration only a�ects the (t, x)-plane, one can make the identi�cation ξ2 = y, ξ3 = z.
The observer still needs to be at rest for ξ1 = y = z = 0 and the proper time along the
worldline should be equal to ξ0. Furthermore, for the �rst two coordinates we can demand
the metric of the comoving frame to be proportional to the metric in the inertial frame.
Hence

ds2 = χ2(ξ0, ξ1)
[
(dξ0)2 − (dξ1)2

]
− dy2 − dz2. (5.78)

Then we can follow the same procedure as before and de�ne the lightcone coordinates
ũ ≡ ξ0 − ξ1 and ṽ ≡ ξ0 + ξ1.

ds2 = χ2(ũ, ṽ)dũdṽ − dy2 − dz2. (5.79) eq:unruhmetric2

5.2.1 Massless scalar �eld

The relation between the �rst two components of the metrics (
eq:metric4d
5.76) and (

eq:unruhmetric2
5.79) is the same

as in (1 + 1)-dimensions (
eq:unruhmetric
5.20) but the metric is no longer conformally �at. As a result

the action is no longer conformally invariant. We �nd then

St =
1

2

ˆ [
(∂tφ)2 − (∂xφ)2 − (∂yφ)2 − (∂zφ)2

]
dtdxdydz, (5.80)
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the action of the �elds quantized with respect to the Minkowski time t, and

Sτ =
1

2

ˆ [
(∂ξ0φ)2 − (∂ξ1φ)2 − e2aξ1

((∂yφ)2 + (∂zφ)2)
]
dξ0dξ1dydz, (5.81)

the action of the �elds quantized with respect to the proper time τ = ξ0. The equations
of motion become

(∂2
t − ∂2

x − ∂2
~x⊥

)φ = 0 and (∂2
ξ0 − ∂2

ξ1 − e2aξ1
∂2
~x⊥

)φ = 0, (5.82)

where ~x⊥ = (y, z). For the modes in the inertial frame, the solution is given by

φ(t, ~x) ∝ e−i(ωu−~k·~x⊥). (5.83)

Note that the equation of motion for 4-dimensional Rindler spacetime has the same form
as the massive 2-dimensional equation from the previous section. Writing the Rindler �eld
as

φ̂(ξ0, ξ1, ~x⊥) = fq0~q⊥(ξ1)e−i(q0ξ0−~q⊥·~x⊥), (5.84)

where ~q⊥ ≡ (q2, q3) the equation of motion becomes

(−q2
0 − ∂2

ξ1 + e2aξ1
~q⊥)fq0~q⊥(ξ1) = 0. (5.85)

The derivation of the solution is equivalent to the derivation following (
eq:mass2dKG
5.58) with the

replacement m2 = ~q⊥ where the dispersion relation is such that ~q0 =
√
q2

1 + ~q2
⊥. Taking

advantage of this the �elds can be readily obtained as

φ̂(ξ0, ξ1, ~x⊥) =

∞̂

−∞

dq1d~q⊥
(2π)3/2

1√
2q0

(
b̂q0~q⊥fq0~q⊥e

−i(q0ξ0−~q⊥·~x⊥) + b̂†q0~q⊥f
∗
q0~q⊥

ei(q0ξ
0−~q⊥·~x⊥)

)
,

φ̂(t, ~x) =

∞̂

−∞

dp1d~p⊥
(2π)3/2

1√
2p0

(
âp0~p⊥e

−i(p0t−~p⊥·~x⊥) + â†p0~p⊥
ei(p0t−~p⊥·~x⊥)

)
.

(5.86)
The creation and annihilation operators, (

eq:commboson
5.36), satisfy the 4-dimensional bosonic commu-

tation relations
[
âp0~p⊥ , â

†
p′0~p
′
⊥

]
= δ(p0−p′0)δ2(~p⊥−~p′⊥),

[
b̂q0~q⊥ , b̂

†
q0~q⊥

]
= δ(q0− q′0)δ2(~q⊥−~q′⊥). (5.87)

Note that the exponentials depending on ~x⊥ are equal for both φ̂(ξ0, ξ1, ~x⊥) and φ̂(t, x, ~x⊥).
As a result these terms will drop out after multiplication by e−i~q

′
⊥·~x⊥ or e−i~p

′
⊥·~x⊥ followed

by integration over ~x⊥ and ~q⊥ or ~p⊥.
The Bogoliubov coe�cients can be read of from the massless 2-dimensional case and

yield

αq0p0 =
e
πq0
2a√

4πap0 sinh
(πq0
a

)
(
p0 + p1

p0 − p1

)− iq0
2a

,

βq0p0 = − e−
πq0
2a√

4πap0 sinh
(πq0
a

)
(
p0 + p1

p0 − p1

)− iq0
2a

.

(5.88)

The number operator in 4 dimensions becomes

〈
N̂q0~q⊥

〉
=

ˆ
dp0

ˆ
d~p⊥ |βq0p0 |

2 . (5.89)
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Instead of plugging in the explicit coe�cients, one can make use of the completeness relation
in 4 dimensionsˆ

dp0d~p⊥(αq0p0α
∗
q′0p0
− βq0p0β

∗
q′0p0

) = δ(q0 − q′0)δ2(~q⊥ − ~q′⊥), (5.90)

and the relation
|αq0p0 |

2 = e
2πq0
a |βq0p0 |

2 , (5.91)

to obtain 〈
N̂q0~q⊥

〉
=
(
e

2πΩ
a − 1

)−1
δ(0)δ3(~0). (5.92)

Dividing out the volume as before yields the number density

〈n̂〉 =

〈
N̂q0~q⊥

〉

V
=
(
e

2πΩ
a − 1

)−1
. (5.93)

5.2.2 Massive scalar �eld

Similar to the previous section, most of our equations remain valid. The Euler-Lagrange
equation now yields the massive Klein-Gordon equation in 3 + 1-dimensions

(
∂2
t − ∂2

x − ∂2
~x⊥

+m2
)
φ(t, x, ~x⊥) = 0, (5.94)

for the inertial observer. The solution to this equation is given by

φ ∝ e−ipµxµ , (5.95)

where now pµ = (p0, p1, ~p⊥), xµ = (t, x, ~x⊥) and p0 =
√
p2

1 + ~p⊥ +m2 and ~x⊥, ~p⊥ are
de�ned as before. For the accelerated observer we use Rindler coordinates such that
φ(ξ0, ξ1, ~x⊥) has to satisfy

(
∂2
ξ0 − ∂2

ξ1 − e2aξ1 (
∂2
~x⊥
−m2

))
φ(ξ0, ξ1, ~x⊥) = 0. (5.96)

This equation can be solved equivalently to the massless case yielding
(
−q2

0 − ∂2
ξ1 + e2aξ1

m2
~q⊥

)
φ(ξ0, ξ1, ~x⊥) = 0, (5.97)

where m2
q = q2

2 + q2
3 +m2 can be seen as a shifted mass. The solution is given by (

eq:unruh2dmasssol
5.61) if

we make the substitution m→ mq

fq0~q⊥(ξ1) =

√
2q0 sinh

(πq0
a

)

π2a
K iq0

a

(mq

a
eaξ

1
)
, (5.98)

which gives for φ

φ(ξ0, ξ1, ~x⊥) =

√
2q0 sinh

(πq0
a

)

π2a
K iq0

a

(mq

a
eaξ

1
)
e−i(q0ξ

0−~q⊥·~x⊥). (5.99)

Making the substitution m→ mq in (
eq:unruh2dmassalpha
5.69) leads to

αq0p0 =
e
πq0
2a√

4πap0 sinh
(πq0
a

)
(
p0 + p1

p0 − p1

)− iq0
2a

,

βq0p0 = − e−
πq0
2a√

4πap0 sinh
(πq0
a

)
(
p0 + p1

p0 − p1

)− iq0
2a

,

(5.100)
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where it was used again that mq =
√
~q2
⊥ +m2 =

√
q2

0 − q2
1 =

√
(q0 − q1)(q0 + q1). The

number density can then be obtained as

〈n̂〉 =

〈
N̂q0~q⊥

〉

V
=
(
e

2πΩ
a − 1

)−1
. (5.101)

From the calculations performed above, it is clear that the number density is indepen-
dent of the mass of the �eld and the dimensions of spacetime (for d ≥ 2). The Unruh
e�ect turns out to be a purely geometric e�ect. It arises for a generic Lorentz-invariant
matter theory simply because of the properties of the Rindler frame (see Sect.

sect:unruh1
5.1 for more

details).
Consider a generic Lorentz invariant Green's function GM (x, x′) = GM (x − x′) for

an interacting theory in Minkowski space. When evaluated on the worldline (
eq:MinkInRind
5.29) of a

uniformly accelerated observer, it will be a function of the Rindler coordinates (~x⊥, τ) and
(~x′⊥, τ

′). Since the theory is Lorentz invariant, GM can only depend on (x − x′)2. Using
the relation

(t− t′)2 − (x− x′)2 = a−2
[
(sinh aτ − sinh aτ ′)2 − (cosh aτ − cosh aτ ′)2

]

= 2a−2 (cosh(a∆τ)− 1) ,
(5.102)

with ∆τ = τ−τ ′, the Rindler Green's function has a τ dependence of the formGR(cosh a∆τ).
Focusing for simplicity on τ ′ = 0, a Wick rotation t = itE will induce, through t =
a−1 sinh aτ , a corresponding Wick rotation in Rindler time, τ = iτE . But this then
means that a general Rindler two-point function will be periodic in Rindler time, since

GR(cosh aτ) → G
(E)
R (cos aτE) = G

(E)
R (cos(aτE + 2π)). We thus see that the periodicity

β = 2π/a implies a temperature T = a/2π.
As a consequence of this property, possible corrections to the Unruh e�ect arising

from quantum gravity models, will not propagate through to the number density. In the
following section, a framework based on the emission rate will be developed, exactly with
the intention to capture signatures originating from quantum gravity.

6 Rates from correlators
sect.2

The rest of this work will follow the detector approach to the Unruh e�ect
Birrell:1982ix,Unruh:1983ms,HawkingIsrael:1979,Agullo:2010iq
[35, 60, 61, 45].

The advantage of this approach is that it considers observable quantities, namely emission
and absorption rates of the accelerated detector. The response of the accelerated detector
then indicates that it is immersed in a thermal bath of particles. This framework is ideally
suited for studying corrections to the Unruh e�ect by using e�ective two-point correlation
functions incorporating quantum gravity e�ects. We �rst review the formalism following
Agullo:2010iq
[45] before applying it to dimensional �ows in Sects.

sect.3
7,

sect.3b
8, and

sect.4
9.

6.1 Particle detectors and two-point functions
sect.21

The simplest model of a particle detector is a quantum mechanical system with two internal
energy states |E2〉 and |E1〉, with energies E2 > E1. The detector moves along a worldline
x(τ) parameterized by the detector's proper time τ and interacts with a scalar �eld Φ(x)
by absorbing or emitting its quanta. The coupling of Φ to the detector is modeled by a
monopole moment operator m(τ) acting on the internal detector eigenstates through the
Lagrangian

LI = g m(τ)Φ(x(τ)) . (6.1) detectorPhi
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We will consider in the following the two cases of a detector moving inertially in
Minkowski space, and one moving along a uniformly accelerated trajectory, which de-
�nes the Rindler space (see Sect.

sect:unruh1
5.1). Let us denote the Minkowski vacuum by |0M 〉, the

Rindler vacuum by |0R〉, and the one-particle state of the �eld Φ with spatial momentum
~k by |~k〉. There are three possible processes giving a non-zero rate. Following the nomen-
clature used in

Agullo:2010iq
[45] we can also give them a thermodynamic interpretation, since it will

turn out that Rindler correlators are thermal. First, the inertial detector can be in the
excited state with energy E2. This is a spontaneous emission process and corresponds to
the transition |E2〉|0M 〉 → |E1〉|~k〉 for an observer comoving with the detector. Second,
the accelerating detector can be in the excited state with energy E2. This is an induced
emission process and instead corresponds to the transition |E2〉|0R〉 → |E1〉|~k〉 for an
inertial observer in Minkowski space (or equivalently |E2〉|0M 〉 → |E1〉|~k〉 for an acceler-

ating one). Finally, an accelerating detector in the ground state E = E1 corresponds to
absorption, or the transition |E1〉|0M 〉 → |E2〉|~k〉. Notice that the term absorption here is
meant purely as an analogy with two state systems, since the one-particle state |~k〉 still
appears as a �nal state.

The transition probability can be expressed in terms of the two-point function of the
�eld. To �rst order in time-dependent perturbation theory, the amplitude for the detector-
�eld interaction takes the form

A(~k) = ig〈Ef |m(0)|Ei〉
ˆ
dτei(Ef−Ei)τ 〈~k|Φ(x(τ))|0M 〉 . (6.2)

The transition probability is the square of the amplitude, integrated over all possible �nal
states

Pi→f =

ˆ
d3k|A(~k)|2 . (6.3)

For Ef = E1 and Ei = E2 this gives the total, spontaneous plus induced, emission proba-
bility.

The �eld Φ can be expanded in its normal mode basis, according to the choice of
vacuum. If we de�ne the annihilation operators in Minkowski space as a~k|0M 〉 = 0, and
those in Rindler space (we work implicitly in the right wedge) as b~k|0R〉 = 0, then the �eld
has the expansions:

Φ(x) =

ˆ
d3k

(
u~ka~k + u∗~ka

†
~k

)
=

ˆ
d3k

(
v
ω~k⊥

b
ω~k⊥

+ v∗
ω~k⊥

b†
ω~k⊥

)
. (6.4)

We used the notation ~k⊥ = (ky, kz), these coordinates are left untouched by the Rindler
coordinate transformation. Here the mode functions in the Minkowski basis are

u~k =
1√

2(2π)3w
e−i(wt−

~k~x) , (6.5)

where w ≡
√
~k2 +m2, whereas in the Rindler basis with coordinates (τ, ξ, ~x⊥) they are

given in terms of a modi�ed Bessel function Kν(x) as
Crispino:2007eb
[49]

v
ω~k⊥

=

[
sinh(πω/a)

4π2a

]1/2

Kiω/a




√
~k2
⊥ +m2

a
eaξ


 e−i(ωτ−

~k⊥·~x⊥) . (6.6) vRind

The sum over all possible one-particle states needed to obtain the transition probabilities
leads to a sum over modes

∑
~k
u~k(x1)u∗~k

(x2). Upon using the completeness of states this
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gives rise to the two-point function for the Minkowski vacuum. De�ning C ≡ g2|〈Ef |m(0)|Ei〉|2,
one �nds

Pi→f = C

ˆ
d3k

ˆ ∞
−∞

dτ1

ˆ ∞
−∞

dτ2 e
i(Ef−Ei)(τ1−τ2)〈~k|Φ(x(τ1))|0M 〉〈0M |Φ(x(τ2))|~k〉

= C

ˆ ∞
−∞

dτ1

ˆ ∞
−∞

dτ2 e
i(Ef−Ei)(τ1−τ2)〈0M |Φ(x(τ2))Φ(x(τ1))|0M 〉. (6.7)

Performing the integration over all the �nal states �rst, the expression for the transition
probabilities then becomes

Agullo:2010iq
[45]

Pi→f = C F (∆E) , (6.8) Pif

where F (∆E) is the so-called response function

F (∆E) =

ˆ ∞
−∞

dτ1

ˆ ∞
−∞

dτ2 e
−i(Ef−Ei)∆τGM (∆τ − iε) . (6.9) FE1

Here ∆τ ≡ τ1−τ2 (from now on the limit ε→ 0+ is understood). For the massive case, the
response function is essentially given by the Fourier transform of the Wightman two-point
function GM (∆τ − iε) evaluated on the detector's trajectory.

In the following we will be interested in the emission case, with Ei = E2 and Ef = E1

and ∆E ≡ E2−E1 is taken positive by de�nition. For the case of the detector undergoing
constant acceleration the total transition probability (

Pif
6.8) contains contributions from

spontaneous and induced emission. Subtracting the spontaneous emission probability one
arrives at the following formula for the induced emission response function

FI(∆E) =

ˆ ∞
−∞

dτ1dτ2 e
i∆E∆τ [GM (∆τ − iε)−GR(∆τ − iε)] . (6.10) parkereq

Here GM is the vacuum (Wightman) two-point function for an observer on the accelerated
trajectory in the Minkowski vacuum,

GM
(
x, x′

)
= 〈0M |Φ (x) Φ

(
x′
)
|0M 〉 , (6.11)

and GR is the vacuum two-point function of an accelerated observer in the Rindler vacuum,

GR
(
x, x′

)
= 〈0R|Φ (x) Φ

(
x′
)
|0R〉 . (6.12)

Practically, it is convenient to work with the induced transition rate per unit time given
by

Ṗi→f = g2 |〈Ef |m(0)|Ei〉|2 ḞI(∆E) , (6.13)

with

ḞI(∆E) =

ˆ +∞

−∞
d∆τ ei∆E∆τ [GM (∆τ − iε)−GR(∆τ − iε)] . (6.14) parkereq2

This equation is the relation between physical rates and two-point functions that we will
use in the following. In order to ease our notation we will set ∆τ = τ and ∆E = E from
now on.

The Wightman function for a massive scalar �eld with mass m in Minkowski space
entering into (

parkereq2
6.14) is given by

G+(~x, t) = −i
ˆ

d3~p

(2π)3

˛
γ+

dp0

2π
G̃(p2) ei~p·~x−ip

0t , (6.15) Wightmanfct
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where

G̃(p2) =
1

p2 −m2
=

1

(p0 +
√
~p2 +m2)(p0 −

√
~p2 +m2)

. (6.16) genfct

The contour γ+ encircles the �rst order pole located at p0 =
√
~p2 +m2. Carrying out the

Fourier integral the positive-frequency Wightman function in Minkowski space is given by
(see, e.g.,

Birrell:1982ix
[35])

GM (x, x′) = − im
4π2

K1

(
im
√

(t− t′ − iε)2 − (~x− ~x′)2

)

√
(t− t′ − iε)2 − (~x− ~x′)2

. (6.17) massiveWightman

Here K1 is the modi�ed Bessel function of the second kind. In the massless limit (
massiveWightman
6.17)

reduces to the Wightman function of a massless scalar �eld in position space
Birrell:1982ix,Agullo:2010iq
[35, 45]

GM (x, x′) = − 1

4π2

1

(t− t′ − iε)2 − (~x− ~x′)2 . (6.18) masslessWightman

The Wightman function in Rindler space is just the same evaluated on the worldline
of the uniformly accelerated detector7

t = a−1 sinh(aτ) , x = a−1 cosh(aτ) , y = 0 , z = 0 . (6.19) rindlertrajectory

For a thermal system, the induced emission probability coincides with the absorption
probability. We can then turn to the proof that the Minkowski vacuum corresponds to a
thermal state when probed by an accelerated detector.

6.2 Emergence of thermality
sect:2.2

As mentioned in Sect.
sect:unruh
5, the Unruh e�ect arises from the geometry of Rindler spacetime.

However, there is a subtlety in the Wick rotation t = itE when the Wightman function

GR(cosh aτ) → G
(E)
R (cos aτE) = G

(E)
R (cos(aτE + 2π)). Due to the di�erent domains of

analyticity ofG+ andG− in the complex τ -plane, one actually identi�esGE(τE) = G+(iτE)
for −2π < τE < 0 and GE(τE) = G−(iτE) for 0 < τE < 2π. This is responsible for the
change of sign of τ in the KMS condition.

Undoing the Wick rotation we obtain the KMS condition in the form (with obvious
change of notation)

GR(τ) = GR(−τ − iβ) . (6.20)

This can be put in another equivalent form, which is more natural when dealing with de-
tector rates

Takagi:1986kn
[63]. Since the rate is a Fourier transform of the Wightman function, assuming

that GR(τ) is analytic in the strip −β < Imτ < 0, we have

Ḟ (E) =

ˆ +∞

−∞
dτe−iEτGR(τ − iε)

=

ˆ +∞

−∞
dτe−iE(τ−iβ+2iε)GR(τ − iβ + iε)

= e−(β−2ε)E

ˆ +∞

−∞
dτeiEτGR(τ − iε) . (6.21)

7Note that from here one ξ1 = 0 and ξ0 = τ with respect to Sect.
sect:unruh
5.
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Here in the second line we made use of the analyticity assumption to push down the contour
in the complex τ -plane by i(β−2ε), and in the third line we changed variable of integration
to −τ . Taking ε to zero, the KMS condition becomes

Ḟ (E) = e−βEḞ (−E) . (6.22) KMS

This relation can also be derived directly in the free massive case from the parity properties
of the integrands appearing in the rates.8 A general proof of the KMS condition for an
interacting �eld theory in any dimension was given in

Sewell
[62].

The Unruh temperature is thus only determined by the Euclidean periodicity, and is
protected against corrections as long as the Lorentz invariance of GM is preserved. In
particular, if one computes the average number density 〈n〉 in Rindler space from thermal
considerations alone, one can obtain the usual Planckian distribution with temperature
T = a/2π. As a simple illustration of this fact, in Sect.

sect.23
6.3 we will derive the Planckian

thermal spectrum for a massive scalar �eld, showing as a byproduct that the temperature
is independent of the mass.

6.3 Detector response for massive scalars
sect.23

The direct computation of the induced emission rate proves to be rather nontrivial. Here
we will instead opt for a shortcut, based on the KMS condition.

With reference to the nomenclature previously introduced, let us call ḞA the absorption
rate and ḞE the emission rate. This last one is the sum of spontaneous and induced
emission, ḞE = ḞS + ḞI . From the derivation of the formulas for the detector rates in
Sect.

sect.21
6.1, one immediately �nds that ḞA(−E) = ḞE(E). This is ensured by the fact that

the one-particle state |~k〉 always appears as a �nal state, and thus the Wightman function
has the same frequency for both processes. The di�erence then just amounts to the sign
of the Fourier exponential term. Using the KMS condition (

KMS
6.22), this gives

ḞA(E) = e−βEḞA(−E) = e−βEḞE(E) = e−βE [ḞI(E) + ḞS(E)] . (6.23)

If the induced emission and absorption rates coincide

ḞA(E) = ḞI(E) (6.24) equal

it follows that

ḞI(E) =
ḞS(E)

eβE − 1
. (6.25) induced

Thus one only needs to compute the spontaneous rate to obtain that for induced emission.
Condition (

equal
6.24) can be explicitly proven for a free massive scalar �eld. It is indeed

found in this case
Takagi:1986kn
[63] that

Ḟ (E) =

ˆ +∞

−∞
dτe−iEτGR(τ − iε)

= 2π

ˆ
d2k⊥

∣∣∣vω~k⊥
∣∣∣
2

[θ(E)N(E/a) + θ(−E)(1 +N(|E|/a))] , (6.26)

where

N(x) =
1

e2πx − 1
. (6.27)

8We thank J. Louko for pointing this out to us.
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The di�erent terms in (
4.1.11
6.26) have a direct interpretation in the language of Sect.

sect.21
6.1. The

�rst term corresponds to the absorption case, while the second is the sum of the sponta-
neous and induced emission. Indeed, as a check one can compute directly the spontaneous
emission rate by considering an accelerated detector in the Rindler vacuum (which is there-
fore at rest), with ξ = 0 and ~x⊥ = 0. An explicit calculation of this term following

Agullo:2010iq
[45]

(see (3.11) in that reference) gives

ḞS(E) = 2π

ˆ
d2k⊥dω

∣∣∣∣∣∣
Kiω/a




√
~k2
⊥ +m2

a



∣∣∣∣∣∣

2

sinh(πω/a)

4π4a
δ(ω − E) (6.28) 3.11m

which, using (
vRind
6.6), precisely reproduces the spontaneous term in (

4.1.11
6.26). It is then manifest

from (
4.1.11
6.26) that (

equal
6.24) and (

induced
6.25) hold.

Based on (
induced
6.25) it then su�ces to compute the spontaneous emission rate. Rather

than attempting to solve (
3.11m
6.28) analytically, an approximation using the response function

will prove to e�ectively capture the high energy behavior of the spontaneous emission rate.
We then consider a detector at rest in the Minkowski vacuum, in general dimension d

Birrell:1982ix
[35].

The simplest way is to start from (
FE1
6.9) and substitute the explicit form of the two-point

function:

F (∆E) ≈
ˆ ∞
−∞

dτ1

ˆ ∞
−∞

dτ2 e
i∆E∆τ

ˆ
ddk

(2π)d
1

2ω
e−iω(t(τ1)−t′(τ2))+i~k·(~x(τ1)−~x′(τ2)) . (6.29) response

Inverting the τ and k integrations we �nd

ḞS(E) ≈
ˆ

dd−1k

(2π)d−1

1

2
√
k2 +m2

ˆ +∞

−∞
dτe−i(

√
k2+m2−E)τ

=
π
d−1

2

Γ(d−1
2 )(2π)d−2

(
E2 −m2

) d−3
2 θ(E −m) . (6.30)

Exploiting now relation (
induced
6.25), the induced rate function per unit time of the accelerated

detector in d = 4 becomes

Ḟ ≈ 1

2π

√
E2 −m2 θ(E −m)

1

e
2πE
a − 1

. (6.31) Fdotfinal

Plotting the numerical integration of (
3.11m
6.28) and the approximation (

Fdotfinal
6.31) as a function of

the energy, E, one can clearly see that for large energies the approximation agrees with
the numerical result. For the case of a massless scalar �eld, the spontaneous emission rate
can be calculated analytically and the approximation becomes exact

Takagi:1986kn
[63].

The rate function constitutes the main result of this subsection. Taking the limit
m→ 0, it agrees with the derivation for the massless case given in

Birrell:1982ix,Agullo:2010iq
[35, 45]. The structure

of (
Fdotfinal
6.31) then motivates the de�nition of a pro�le function F(E) via

Ḟ ≈ 1

2π
F(E)

1

e
2πE
a − 1

. (6.32) defresf

For a massless and massive scalar �eld obeying the Klein-Gordon equation one then has

Fmassless(E) = E , Fmassive(E) =
√
E2 −m2 θ(E −m) . (6.33)

For general dimension the pro�le function is

F(E) =
π
d−1

2

Γ(d−1
2 )(2π)d−3

(
E2 −m2

) d−3
2 θ(E −m) . (6.34) rategen

40



1 2 3 4 5 6
E

0.2

0.4

0.6

0.8

F H EL

Figure 6: The pro�le function F(E) for a = 0.3 and m = 1. The blue, solid line depicts
the numerical integration (

3.11m
6.28) while the red, dashed line shows the approximation (

Fdotfinal
6.31).

For large values of E, (
3.11m
6.28) is well approximated by (

Fdotfinal
6.31).

As we will show in the subsequent section, it is this pro�le function that actually carries
information about quantum gravity corrections to the Unruh rate.9

As stressed before, the Planckian thermal factor is independent of the details of the
�eld considered. The fact that the mass dependence enters through the prefactor tells us
that the signatures of the �elds involved will only be present in physical rates, and not in
number densities 〈n〉.

7 Master formulas for modi�ed detector rates
sect.3

In the presence of a dimensional �ow, G̃(p2) entering into (
Wightmanfct
6.15), acquires a non-trivial

momentum dependence.10 It is useful to distinguish the two cases where [G̃(p2)]−1 is a
polynomial in p2 or given by a more general function with a �nite number (typically one)
of zeros in the complex p0-plane. These two cases will be discussed in Sects.

sect.31
7.1 and

sect.32
7.2,

respectively.

7.1 Detector rates from the Ostrogradski decomposition
sect.31

We start by considering the case in which
[
G̃(p2)

]−1
≡ Pn(p2) is an inhomogeneous poly-

nomial of order n. This covers the class of theories with a general quadratic e�ective
Lagrangian L = 1

2φPn(−∂2)φ where Pn is a local function of the �at space d'Alembertian
operator that admits a Taylor expansion around zero momentum. This comprises all local
theories in which higher order corrections come in de�nite powers of momenta. The limit-
ing case n→∞ can also be considered. In this case the pro�le function F(E), (

defresf
6.32), can

be constructed from the Ostrogradski decomposition for a higher-derivative �eld theory.
The polynomial Pn(z) has n roots, µi, i = 1, . . . , n in the complex z-plane. It can then

be factorized according to

Pn(z) = c
n∏

i=1

(z − µi) (7.1) poly1

9In the subsequent sections, the approximation sign for the pro�le function will be omitted.
10As noted before, this does not necessarily entail the breaking of Lorentz symmetry since G̃(p2) may

still be a Lorentz invariant function depending on the square of the momentum four-vector only.
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where c is a normalization constant. In order to connect to the case of a massive scalar
�eld, the momentum space propagator is decomposed according to

[Pn(z)]−1 =
1

c

n∑

i=1

Ai
(z − µi)

(7.2) poly2

where the coe�cients Ai are functions of the roots µi. Assuming that z 6= µi, (
poly1
7.1) and

(
poly2
7.2) can be multiplied to obtain the condition

n∑

i=1

Ai
∏

j 6=i
(z − µj) = 1 . (7.3) aconst

This condition must hold for any value z 6= µi. Since the left-hand-side is a polynomial in
z of order n − 1, (

aconst
7.3) gives rise to n equations determining the coe�cients Ai. De�ning

the vector Z ≡
[
1, z, . . . , zn−1

]
and introducing the coe�cient matrix C via Cij Zj ≡∏

j 6=i (z − µj), (
aconst
7.3) entails

n∑

i=1

Ai Cij = δ1j , (7.4)

where δij is the Kronecker symbol. This equation can be solved for Ai if C is invertible,
i.e. det C 6= 0. The general condition for the two-point function to be factorizable then is
µi 6= µj , i 6= j, i.e., all roots of the polynomial have order one.

Assuming that these conditions are met, the solution for the Ai is given by the �rst
row of the inverse matrix C, Ai =

(
C−1

)
1i
. The explicit solution for the Ai is then given

by

Ai =


∏

j 6=i
(µi − µj)



−1

. (7.5) Aisol

For future reference, it is convenient to give the coe�cients Ai entering the decomposition
(
poly2
7.2) for the cases n = 2 and n = 3 explicitly. For n = 2,

A1 =
1

µ1 − µ2
, A2 =

1

µ2 − µ1
, (7.6)

while for n = 3 one has

A1 =
1

(µ1 − µ2)(µ1 − µ3)
, A2 =

1

(µ2 − µ1)(µ2 − µ3)
, A3 =

1

(µ3 − µ1)(µ3 − µ2)
. (7.7)

At this stage the following remark is in order. On mathematical grounds the decom-
position (

poly2
7.2) works as long as all roots of the polynomial have order one. On physical

grounds there are extra conditions on the roots: comparing (
poly2
7.2) and (

genfct
6.16) establishes

that µi = m2 should be identi�ed with the square of the particle mass. This implies that
roots located at the negative real axis correspond to modes with a negative mass squared.
In this case the isolated poles at p0 = ±

√
~p2 + µi are turned into branch cuts and we will

not consider this tachyonic case in the following. Moreover, complex roots always come in
pairs µ, µ̄. This implies that the positive frequency Wightman function contains unstable
modes which grow exponentially in the far past and far future (also see

Aslanbeigi:2014zva
[31] for a detailed

discussion of this feature). On this basis, we restrict ourselves to polynomials Pn(p2) whose
roots are located at the positive real axis, see Fig.

fig2
7.

Since the rate function (
parkereq2
6.14) is linear in the Wightman function, it is rather straight-

forward to obtain the detector response function for the case (
poly2
7.2). Following the steps of
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Ostrogradski decomposition (
poly2
7.2) of the function G̃(p2).

Sect.
sect.23
6.3, we can compute the pro�le function F(E) determining the rate (

defresf
6.32). Substi-

tuting the explicit form of the Ai from (
Aisol
7.5) the result reads

F(E) =
1

c

n∑

i=1


∏

j 6=i
(µi − µj)



−1
√
E2 − µi θ(E −

√
µi) . (7.8) moddetrate

The rate function is completely determined by the roots of the polynomial Pn(p2). It
receives new contributions once new channels become available, i.e., if the energy gap E
crosses a threshold µi where new degrees of freedom enter. Ordering the roots µi by their
magnitude, i.e., µj > µi for j > i, one sees that the sector with µj , j > i does not a�ect
the �low-energy� part of the rate function with E < µi: the energy gap E of the detector is
not large enough to absorb a particle of mass

√
µj , j > i. This, in particular, implies that

if the polynomial (
poly1
7.1) arises from an e�ective �eld theory description of a system, there

are no corrections to the massless Unruh e�ect below the �rst threshold µ2 > 0, provided
that the polynomial Pn is properly normalized. The master formula (

moddetrate
7.8) then constitutes

the main result of this section.

7.2 Detector rates from the Källen-Lehmann representation
sect.32

Notably, not all two-point functions proposed in the context of quantum gravity fall in the
class where the Ostrogradski-type decomposition is admissible. A prototypical example is
provided by Causal Set Theory. Here G̃(p2) interpolates between the standard propagator
for a massive scalar �eld for momenta p2 below the discretization scale and a nonlocal
expression without giving rise to additional poles in the complex p0-plane

Carlip:2015mra,Belenchia:2015aia
[18, 19]. In

these cases it is still possible to obtain an explicit formula for the pro�le function F(E)
based on the Källen-Lehmann representation of the two-point function.

The Källen-Lehmann representation of the positive frequency Wightman function in
position space is given by

G+(t, ~x) =

ˆ ∞
0

dm2 ρ(m2)G
(0)
+ (t, ~x;m) . (7.9)

Here ρ(m2) denotes a spectral density and G
(0)
+ (t, ~x;m) is the positive-frequency Wightman

function given in (
massiveWightman
6.17). Substituting the Källen-Lehmann representation into (

parkereq2
6.14) and
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exchanging the order of integration, the computation of the rate function reduces to the
one for the massive scalar �eld carried out in Sect.

sect.23
6.3. The resulting pro�le function F(E),

(
defresf
6.32), is given by

F(E) =

ˆ E2

0
dm2 ρ(m2)

√
E2 −m2 . (7.10) spectralF

Hence the pro�le function obtained from the Källen-Lehmann representation is given by
the superposition of contributions with mass m weighted by the spectral density ρ(m2).
Only excitations with mass below the energy gap of the detector contribute to the rate
function, which is consistent with the expectation that contributions with m2 > E2 will
not excite the detector. The result from the Ostrogradski decomposition, (

moddetrate
7.8), can then

be understood as a special case where ρ(m2) is given by a sum of δ-distributions located
at m2 = µi.

Dimensional reduction in general seems to be at odd with unitarity. On a manifold
with spectral dimension ds, the asymptotic form of the two-point function in momentum
space is

G(p2) ∼ (p2)d/ds . (7.11)

Expressing a general two-point function through the Källen-Lehmann representation as
in the previous section, we see that, as soon as ds < d, its fall-o� properties can only
be consistent with the p−2 behavior of the spectral representation if we relax the positiv-
ity properties of the spectral function ρ(m2). This automatically entails the presence of
negative-normed states and thus a departure from unitarity.

This signals the fact that these types of higher derivative toy models shouldn't be taken
too fundamentally. It is likely that dimensional reduction, together with (local) Lorentz
invariance, signals the presence of a fundamentally nonlocal theory at small scales. The
issue of unitarity for nonlocal theories then is more subtle, see

Eliezer:1989cr
[64] for a more detailed

discussion. The higher-derivative toy models can be considered as approximations to a full
nonlocal theory, in which unitarity is preserved.

8 Scaling dimensions
sect.3b

The two-point function G̃(p2) serves as the essential input for computing both the spectral
dimension Ds seen by a scalar �eld propagating on the spacetime as well as the rate
function of the Unruh detector. Thus, it is conceivable that there is a relation between the
rate function of the Unruh detector and the spectral dimension. This section introduces
the de�nitions needed to make this relation precise.

In the computation of the spectral dimension, p2 ≡ (p0)2− ~p 2 is analytically continued
to Euclidean signature p2

E ≡ (p0
E)2 + ~p 2 > 0. Subsequently, one introduces a �ducial

di�usion process based on a (modi�ed) di�usion equation

∂σK(x, x′;σ) = −F (−∂2
E)K(x, x′;σ) , (8.1) diffeq

subject to the boundary conditionK(x, x′, 0) = δd(x−x′). Here σ is the (external) di�usion
time, K(x, x′;σ) is the di�usion kernel and F (−∂2

E) is determined by the equations of

motion of the propagating �eld. In terms of Fourier-modes F (p2
E) = (G̃(−p2

E))−1. The
solution of Eq. (

diffeq
8.1) is readily obtained in Fourier-space and reads

K(x, x′;σ) =

ˆ
ddp

(2π)d
eip(x−x

′) e−σF (p2
E) . (8.2)
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The return probability after di�usion time σ is given by

P (σ) =

ˆ
ddp

(2π)d
e−σF (p2

E) , (8.3) retprob

and the scale-dependent spectral dimension Ds(σ) is de�ned as

Ds(σ) = −2
d lnP (σ)

d lnσ
. (8.4)

This de�nition generalizes the standard de�nition of the spectral dimension ds which is
recovered by evoking the limit of in�nitesimal random walks σ → 0. This framework
yields the spectral dimension associated with the two-point function G̃(p2) commonly used
to assess the dimensionality of spacetime in quantum gravity.

Analyzing the scaling behavior in (
retprob
8.3) one �nds that for the case where F (p2

E) ∝ p2+η
E

the spectral dimension is given by
Reuter:2011ah
[7]

Ds =
2d

2 + η
. (8.5) spectraldimension

The case of a massless scalar �eld with G̃(p2) = p−2 corresponds to η = 0 and the spectral
dimension agrees with the topological dimension d of the spacetime. In case of a multiscale
geometry the scaling law F (p2

E) ∝ p2+η
E is obeyed for a certain interval of momenta only.

In this case the spectral dimension will depend on the di�usion time σ. If the scaling
regime extends over a su�ciently large order of magnitudes, Ds(σ) will be approximately
constant in this regime, realizing a plateau structure. Typically, such plateaus where Ds(σ)
is approximately constant are connected by short transition regions where Ds changes
rather rapidly, see Fig.

Fig.dimflow1
8 for an explicit example illustrating this type of crossover.

In a similar spirit, one can de�ne the e�ective dimension of spacetime seen by the
Unruh detector. Eq. (

rategen
6.34) indicates that the pro�le function for a massless scalar �eld

obeying the Klein-Gordon equation in a d-dimensional spacetime scales as

F(E) ∝ Ed−3 . (8.6)

This motivates de�ning the e�ective dimension seen by the Unruh rate, the Unruh dimen-
sion DU , according to

DU (E) ≡ d lnF(E)

d lnE
+ 3 . (8.7) UnruhDimension

For a massless scalar �eld with G̃(p2) = p−2 or a massive scalar �eld and energy E2 � m2,
DU is independent of E and coincides with the classical dimension d of the underlying
spacetime. Paralleling the discussion of the spectral dimension, this feature changes, how-
ever, if G̃(p2) has a non-trivial momentum pro�le. The examples presented in Sect.

sect.4
9

indicate that DU may agree with the spectral dimension in certain cases, but in general
the two are di�erent quantities. The Unruh dimension may yield a characterization of
quantum spacetimes which is accessible by experiment, at least in principle. Note that
the dimensions are only well-de�ned in plateau regions of su�cient extent and have to be
taken with caution during crossovers

Reuter:2011ah
[7].

A direct comparison between DU and Ds requires an identi�cation of E and the di�u-
sion time σ. The matching of dimensions in the classical case suggests using

σ = E−2n , (8.8) scalesetting

where 2n is the mass-dimension of G̃(p2). We will use this relation in the sequel.
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The emission/absorption rates can be related to the density of states of the system
interacting with the detector. The density of states as a function of momentum can be
de�ned as ρ(k) = dΩ(k)/dk, where Ω(k) is the volume of momentum space. Since the
spectral dimension ds is the Hausdor� dimension of momentum space, we can assume that
Ω will scale as Ω(k) ∼ ckds . Then we see that ρ(k) ∝ kds−1, and a smaller value of ds
entails a suppression of the density of states. This in turn will imply a suppression of
the various transition rates. Due to the relation between this density of states and the
transition rates, we expect a relation between the spectral and Unruh dimensions, Ds and
DU . This relation will indeed be made more precise in the next sections.

9 Unruh rates and dimensional �ows
sect.4

We illustrate the general formalism devised in Sect.
sect.3
7 by �rst studying corrections to the

Unruh rate arising within quantum gravity inspired multiscale models in Sect.
sect.41
9.1. The

connection to Kaluza-Klein theories, spectral actions, and Causal Set Theory will be made
in Sects.

sect.43
9.2,

sect.44
9.3, and

sect.45
9.4, respectively.

9.1 Dynamical dimensional reduction
sect.41

In this subsection we investigate modi�cations of the Unruh rate arising from a particular
class of quantum-gravity inspired two-point functions G̃(p2) typically encountered when
discussing the �ows of the spectral dimension.

Two-scale models

The simplest way to obtain a system exhibiting dynamical dimensional reduction is based
on a polynomial, (

poly1
7.1) with n = 2, containing a single mass scale m:

P2(p2) = − 1

m2
p2
(
p2 −m2

)
. (9.1) ansatz1

Here the normalization c has been chosen such that the model gives rise to a canonically
normalized two-point function at low energy. The scaling of this ansatz is given by

P2(p2) ∝

{
p2 , p2 � m2

p4 , p2 � m2 ,
(9.2)

with the crossover occurring at m2. Evaluating (
spectraldimension
8.5), the spectral dimension based on this

model interpolates between a classical regime with Ds = 4 for long di�usion times and
Ds = 2 for short di�usion times.

The Ostrogradski decomposition (
poly2
7.2) of (

ansatz1
9.1) yields

G̃(p2) =
1

p2
− 1

p2 −m2
. (9.3) 2point

The master formula (
moddetrate
7.8) gives the following expression for the pro�le function

F(E) = E −
√
E2 −m2 θ(E −m) . (9.4) 2scalemodel

Expanding F for small and large E leads to the scaling behavior

E < m : F(E) = E ⇐⇒ DU = 4 ,

E � m : F(E) = 1
2E +O(E−2) ⇐⇒ DU = 2 .

(9.5) 2scaleasym
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Figure 8: Pro�le function F(E), (
2scalemodel
9.4), for m = 1 (left panel). The asymptotics given inFig.dimflow1

(
2scaleasym
9.5) are illustrated by the dashed lines. The right panel shows the dimensions Ds (dashed
line) and DU (solid line) resulting from the two-point function (

2point
9.3).

This expansion implies that a kinetic term including higher-derivative contributions leads
to detector rates which are suppressed at high energies. In particular, whereas for a
massless (free or interacting) scalar �eld with a standard kinetic term the prefactor of the
rate grows linearly with energy, the pro�le function vanishes proportional to E−1 at high
energies. This also entails that the Unruh dimension DU interpolates between the classical
dimension DU = 4 for small energy and DU = 2 for E � m.

For m = 1 this pro�le function is shown in the left panel of Fig.
Fig.dimflow1
8. Despite the inclusion

of modes with a wrong sign kinetic term (poltergeists) in (
2point
9.3) the Unruh rate is positive

de�nite, indicating that the model is stable in this respect. The right panel of Fig.
Fig.dimflow1
8 shows

the spectral dimension (dashed line) and e�ective dimension seen by the Unruh e�ect (solid
line) where the construction of the spectral dimension is based on the identi�cation (

scalesetting
8.8).

Both dimensions interpolate between D = 4 for E < m and D = 2 for E � m. DU

displays a discontinuity at E2 = m2 which can be tracked back to the derivative of the
square-root becoming singular at this point.

Multi-scale models

At this stage it is instructive to consider a multiscale model which may exhibit more than
two scaling regions. The simplest model of this form is build from a third order polynomial
P3(p2) with vanishing mass m1 = 0

P3(p2) =
1

m2
2m

2
3

p2 (p2 −m2
2) (p2 −m2

3) , m3 > m2 . (9.6) ansatz2

Provided that m3 � m2 this ansatz exhibits three scaling regimes

P3(p2) ∝





p2 , p2 � m2
2 , Ds = 4

p4 , m2
2 � p2 � m2

3 , Ds = 2

p6 , m3
2 � p2 , Ds = 4

3 ,

(9.7) 3scalemod

where the spectral dimension has been determined by evaluating (
spectraldimension
8.5).

Performing the Ostrogradski decomposition for P3(p2) gives

G̃(p2) =
1

p2
− m2

3

m2
3 −m2

2

1

p2 −m2
2

+
m2

2

m2
3 −m2

2

1

p2 −m2
3

. (9.8)
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Figure 9: Illustration of the Unruh e�ect in a n = 3 multiscale model with m1 = 0,Fig.dimflow2

m2 = 0.1 and m3 = 10. The resulting pro�le function F(E) is shown in the left panel
while DU and Ds are displayed in the right panel. The horizontal gray lines indicate the
plateau values of the dimensions at 4, 2, 4/3 and 0. Notably, DU and Ds exhibit di�erent
asymptotics for E � m3.

The resulting pro�le function then reads

F(E) = E − m2
3

m2
3 −m2

2

√
E2 −m2

2 θ(E −m2) +
m2

2

m2
3 −m2

2

√
E2 −m2

3 θ(E −m3) . (9.9)

Expanding F for small and large E leads to the scaling behavior

E < m2 : F(E) = E ⇐⇒ DU = 4 ,

E � m3 : F(E) = −m2
2 m

2
3

8E3 +O(E−4) ⇐⇒ DU = 0 .
(9.10) 3scaleasym

At this stage two remarks are in order. In contrast to the two-scale model, the n = 3
case exhibits regions where the pro�le function F(E) actually becomes negative. This is
illustrated in the example shown in Fig.

Fig.dimflow2
9. The form where limE→∞ F (E)→ 0 from below

then indicates that this feature holds for all values m2 and m3. Thus the Unruh rate
exhibits an instability for a generic n = 3 model.

Furthermore, the spectral and Unruh dimensions shown in the right panel of Fig.
Fig.dimflow2
9 show

that, contrary to the two-scale model, the asymptotics for DU and Ds do not agree for
E � m2

3. In the general case, this may be understood as follows. Considering the general
expression (

moddetrate
7.8) for m1 = 0, DU is given by the classical dimension as long as E < m2.

Each additional term in the sum creates a new scaling region where DU decreases by two
compared to its previous value. In contrast the pattern for the spectral dimension follows
from (

spectraldimension
8.5). Combining these relations allows to express the e�ective dimension seen by the

Unruh e�ect in terms of the spectral dimension

DU = 6− 8

Ds
. (9.11) dimrel

Thus, while there is a clear relation between DU and Ds, the e�ective dimensions seen by a
random walk and the Unruh e�ect generically do not coincide within the class of multiscale
models studied here.

Logarithmic correlation functions

An interesting model which does not fall into the class of multiscale models where the
Ostrogradski decomposition can be applied arises from

G̃(p2) = p−4 . (9.12) p4model
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This is the typical fall-o� behavior of correlation functions in quantum gravity models
which lead to Ds = 2 in the ultraviolet. In this case the positive-frequency Wightman
function is

G+(~x, t) = −i
ˆ

d3k

(2π)3

˛
γ+

dk0

2π

ei
~k·~x−ik0t

(k0 + |~k|)2(k0 − |~k|)2
. (9.13)

Picking up the double pole at k0 = |~k|, and setting ~x = 0 before carrying out the angular
momentum integral, one obtains

G+(~x, t) = −4π

ˆ ∞
0

dk

(2π)3
k2

[
2

(2k)3
+

it

(2k)2

]
e−ik(t−iε) = I1 + I2 . (9.14) I12

The second integral is simply

I2 = − 1

8π2
. (9.15)

The �rst integral can be written as a regularized Laplace transform and gives

I1 = lim
ε→0+

lim
ε̃→0+

Γ(ε̃) (ε+ it)−ε̃ =
1

8π2
(log t+ const) . (9.16)

Thus the resulting positive frequency Wightman function has a logarithmic dependence on
the proper distance. Restoring Lorentz invariance, we get

G+(~x, t) =
1

8π2

[
log

(√
(t− t′ − iε)2 − (~x− ~x′)2

)
+ const

]
. (9.17)

Substituting the Wightman function into the formula for the Unruh rate, (
parkereq2
6.14), yields

Ḟ (E) =
1

8π2

ˆ ∞
−∞

dτeiEτ
[
log

(
2 sinh(aτ2 )

aτ

)
+ const

]
. (9.18)

The constant terms give rise to terms proportional to δ(E), indicating an infrared insta-
bility of the setup. Since the propagator (

p4model
9.12) is thought of describing the asymptotic

behavior of the system at high energies we will ignore these terms in the following. Since
the argument of the logarithm is an even function in τ the integral can be expressed as a
(regularized) Fourier cosine transform

Ḟ (E) = lim
ε→0+

1

2aπ2

ˆ ∞
0

dxe−εx log

(
sinh(x)

x

)
cos(ωx) . (9.19)

written in terms of the new variables x = aτ/2 and ω = 2E/a. This integral can now be
written as I = I1 − I2, where

I1 = lim
ε→0+

1

2aπ2

d

dα

ˆ ∞
0

dxe−εx (sinh(x))α cos(ωx)

∣∣∣∣
α→0

= −
π coth(πω2 )

2ω
,

I2 = lim
ε→0+

1

2aπ2

d

dα

ˆ ∞
0

dxe−εxxα cos(ωx)

∣∣∣∣
α→0

= − π

2ω
.

(9.20)

Combining the two contributions, the resulting detector rate is given by

Ḟ (E) =
1

4πE

1

1− e
2πE
a

, (9.21)

implying that the pro�le function resulting from a p−4 propagator is given by

F(E) =
1

2E
⇐⇒ DU = 2 . (9.22)
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Figure 10: Pro�le function F(E) for a 5-dimensional Kaluza-Klein theory (
kkprofile
9.24) withFigKKprofile

R = 1/(2π) (blue, solid line). For guidance the lines F(E) = E (black, dashed line) and
F(E) = E2/4 (red line, right diagram) have been included. For E < R−1 the pro�le
function is linear in E, while for E � R−1 it increases proportional to E2.

This is precisely the asymptotic behavior (
2scaleasym
9.5) found in the two-scale model in the limit

E � m. Thus the direct computation of the detector rate in the p4-case con�rms the drop
of the Unruh rate at high energies and constitutes an independent veri�cation of the rate
function found in the two-scale case.

9.2 Kaluza-Klein theories
sect.43

A scenario where the dimensional reduction occurs when going towards the infrared is
provided by Kaluza-Klein theories.11 In this case the (classical) spacetime is assumed
to possess four non-compact and a number of compact spatial dimensions whose typical
extension is given by the compacti�cation scale R. At length scales l� R the e�ect of the
extra-dimensions is invisible and physics is e�ectively four-dimensional. We demonstrate
that also in this situation the dimensional reduction entails a suppression in the Unruh
e�ect. In the case of Kaluza-Klein theories where the number of e�ective dimensions
increases when going to high energies this implies that the detector rates for energies
above the inverse compacti�cation scale are actually enhanced as compared to the four-
dimensional rate.

For the scalar �eld (
eq:KK
4.16) given in Sect.

sect:KKtheories
4.3, each Kaluza-Klein mode φn has a two-point

function of a scalar �eld with mass mn = n/R. Taking into account the entire tower of
modes, the resulting function G̃(p2) is given by

G̃(p2) =
1

2πR

∞∑

n=−∞

(
p2 − n2

R2

)−1

. (9.23)

Applying the master formula (
moddetrate
7.8) to this case then yields the pro�le function

F(E) =
1

2πR

(
E + 2

∞∑

n=1

√
E2 − (n/R)2 θ(E − n/R)

)
. (9.24) kkprofile

The shape of this pro�le function is illustrated in Fig.
FigKKprofile
10. In contrast to the case of a

dynamical dimensional reduction at high energies, all Kaluza-Klein modes contribute to
the pro�le function with the same sign. This leads to an e�ective enhancement of the

11A related discussion of the Unruh detector in Kaluza-Klein theories appeared in Ref.
Chiou:2016exd
[65] during the

�nal stage of preparing the manuscript.
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pro�le function for E > R−1. Explicitly,

E < 1/R : F(E) ∝ E ⇐⇒ DU = 4 ,

E � 1/R : F(E) ∝ E2 ⇐⇒ DU = 5 .
(9.25)

The pro�le function (
kkprofile
9.24) interpolates between these two behaviors. Thus also the pres-

ence of extra dimensions leaves its imprint on the Unruh rate, adapting the scaling law of
the pro�le function once the energy E exceeds the inverse compacti�cation scale.

9.3 Spectral actions
sect.44

A framework which naturally gives rise to two-point functions G̃(p2) with the properties
discussed above are spectral actions. As explained in Sect.

sect:spectral
3, the basic idea is that the ac-

tion describing the dynamics of the theory is generated by the trace of a suitable di�erential
operator, typically the Dirac operator D

Sχ,Λ = Tr
[
χ(D2/Λ2)

]
. (9.26) SpAct1

Here we focus on the case where D2 is given in terms of the Laplace operator on �at
Euclidean space supplemented by an endomorphism including a real scalar �eld φ:12

D2 = −
(
∇2

1+ E
)
, E = −iγµγ5∂µ φ− φ2 . (9.27) lapop

The de�nition of the model is then completed by specifying the function χ.

Nonlocal analytic models

We �rst discuss the case where χ(z) = e−z. In this case the spectral action (
SpAct1
9.26) coincides

with the heat-trace of the Laplace-type operator (
lapop
9.27) which is a well-studied mathemat-

ical object, see e.g.,
Vassilevich:2003xt,Barvinsky:1987uw,Barvinsky:1990up,Avramidi:2000bm,Iochum:2011yq,Codello:2012kq
[66, 67, 68, 69, 70, 71]. In particular the two-point function of the

model is given by

S
(2,φ)
χ,Λ =

Λ2

(4π)2

ˆ
d4x

[
φF0(−∂2

E/Λ
2)φ

]
. (9.28) spectral2

The structure function F0 is obtained from the heat-kernel result for the endomorphism E
and reads

Kurkov:2013kfa
[23]

F0 (z) = 2 z h (z)− 4 , (9.29)

with

h(z) =

ˆ 1

0
dα e−α(1−α)z. (9.30)

The function h(z) is an entire analytic function which is nowhere vanishing in the complex
plane. The momentum-dependent two-point function for this model is then obtained by
analytically continuing (

spectral2
9.28) to Lorentzian signature

G̃(p2) = −8π2

Λ2

1

F0(−p2/Λ2)
, (9.31) ss1

where p2 is the Lorentzian momentum four-vector.

12The spectral dimension arising in this situation has recently been studied in
Alkofer:2014raa
[24], also see

Kurkov:2013kfa
[23] for a

related discussion.
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A careful study of the two-point function (
ss1
9.31) reveals several remarkable features.

First, the model naturally gives rise to a Higgs mechanism for φ. The propagator exhibits
a pole at p2 ' −3.41Λ2 indicating that the expansion of φ around vanishing �eld value
corresponds to expanding at an unstable point in the potential. Restoring the φ4 term13

leads to a scalar potential
V (φ) = −µ2

Hφ
2 + λφ4 + . . . , (9.32)

with µ2
H = 2Λ2. Neglecting the higher-order terms, the potential gives a non-vanishing

vacuum expectation value 〈φ〉 = ± µH√
2λ
. Expanding the �eld around this minimum leads

to a potential for the �uctuation �eld φ̃

V (φ̃) = 2µ2
H φ̃

2 + . . . , (9.33)

Thus, when expanded around the minimum of the scalar potential, the structure function
entering into (

ss1
9.31) should be given by

FH(z) = 2 z h(z) + 8 . (9.34) Fhiggsed

FH(z) has a single real root located at p2 ' 2.56Λ2. This root corresponds to a positive
mass pole in (

ss1
9.31). In addition there are complex roots located, e.g., at

p2 = − (1.32± 21.98i) Λ2 . (9.35)

These roots can be traced back to the mass-term contribution in F0 or FH and are absent
if one considers the zh(z) part only. The presence of complex roots signals that the
Wightman function contains modes which increase exponentially for large times. These
modes introduce an instability in the Unruh e�ect, which we will not investigate further.
It would be very interesting to see if there are functions χ which give rise to a nonlocal
theory avoiding this instability.

Ostrogradski-type models

By making a suitable choice for the function χ one can also generate spectral actions which
are local in the sense that the (inverse) two-point function is given by a �nite polynomial
in p2.14 The simplest choice, leading to a two-scale model, uses

χ(z) = (a+ z) θ(1− z) , a > 0 . (9.36) chi1

Replacing the polynomial multiplying the stepfunction by a polynomial of order n leads
to a multiscale model whose inverse propagator is given by a polynomial of order n in p2.

The spectral action for these cases can be found explicitly by combining the early-time
expansion of the heat-kernel in s ≡ Λ−2

FH =
1

(4π)2

1

s

∞∑

m=0

am (p2
E s)

m ,

=
1

(4π)2

1

s

(
8 + 2 s p2

E −
1

3

(
s p2

E

)2
+ . . .

) (9.37)

with standard Mellin transform techniques
Codello:2008vh
[73]

S
(2,φ)
χ,Λ =

1

(4π)2

ˆ
d4p

(2π)4
φ

[∑

m=0

Qm+1[χ] am (p2
E)m

]
φ . (9.38) spectralas

13For a discussion of the Higgs mechanism in almost-commutative geometry see Sect. 11.3.2 of
vanSuijlekom:2015iaa
[55].

14This is closely related to the zeta-function spectral action proposed in
Kurkov:2014twa
[72].
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Figure 11: Pro�le function (
spectralprofile
9.43) for a = 3.2.spectralrate

The moments Qn depend on the function χ and, for n ∈ Z are given by

Qn[χ] = 1
Γ(n)

´∞
0 dz zn−1 χ(z) , n > 0 ,

Q−n[χ] = (−1)n χ(n)(0) , n ≥ 0 .
(9.39)

For the ansatz (
chi1
9.36) the moments are

Q1[χ] = a+
1

2
, Q0[χ] = a, Q−1[χ] = −1, Q−2 = Q−3 = . . . = 0. (9.40) Qchi1

Converting to Lorentzian signature, the inverse two-point function based on the expansion
of FH , (

Fhiggsed
9.34) is

P2(p2) = − 1

8π2

(
8a+ 4− 2ap2 +

1

3
p4

)
. (9.41) p3poly

The two roots of the system are located at

µ1,2 = 3a∓
√

9a2 − 24a− 12 . (9.42)

Provided that 2(2 +
√

7)/3 < a < (3 +
√

15)/2, both roots are on the positive real axis.
Thus the model falls into the class discussed in Sect.

sect.41
9.1. The pro�le function is readily

obtained by applying the Ostrogradski decomposition to (
p3poly
9.41)

F(E) =
24π2

µ2 − µ1

(√
E2 − µ1 θ(E −

√
µ1)−

√
E2 − µ2 θ(E −

√
µ2)
)
. (9.43) spectralprofile

The behavior of this pro�le function is illustrated in Fig.
spectralrate
11.

For E2 < µ1 the pro�le function vanishes, indicating that the energy gap is too small
for the detector to interact with the two massive �elds. For 7.77 < E2 < 12.77 the pro�le
corresponds to the standard Unruh rate for a �eld with mass m2 = 7.77. Once E2 crosses
the threshold at 12.77 the pro�le function decreases and falls of asymptotically as E−1

for high energies. Thus spectral actions may give rise to similar pro�le functions as the
multiscale models discussed at the beginning of this section.

9.4 Causal Set inspired theories
sect.45

A second framework which naturally gives rise to corrections to the Unruh e�ect are the
nonlocal two-point functions emerging in the context of Causal Set Theory. In this case
the two-point functions extrapolate between a classical massless or massive propagator at
energy scales well below the discretization scale and a discrete D'Alembertian naturally
associated with the Causal Set at high energies

Aslanbeigi:2014zva,liberati
[31, 74]. In this section we will derive the

resulting Unruh signature arising from this setting as well as from Causal Set inspired toy
models.
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Rate suppression in the full theory

The explicit form of the two point function reads15

G+(x2) = − i

2π3

ˆ ∞
0

dξξ2 K1(i
√
x2ξ)√

x2 ξ g(ξ2)
, (9.44) 2pointcausal

where ξ is a momentum and

g(ξ2) = a+ 4πξ−1
3∑

n=0

bn
n!
Cn
ˆ ∞

0
s4(n+1/2)e−CsK1(ξs)ds . (9.45)

The parameters are determined based on the analytic properties of the two-point function
and given by a = − 4√

6
, b0 = 4√

6
, b1 = − 36√

6
, b2 = 64√

6
, b3 = − 32√

6
, C = π

24 . The asymptotics

of g(ξ2) has been determined in
Aslanbeigi:2014zva
[31]

lim
ξ2→0

1

g(ξ2)
= − 1

ξ2
+ · · · ,

lim
ξ2→∞

1

g(ξ2)
= − 2

√
6π

ξ4
+ · · · .

(9.46) asymptotics

We thus see that at high energies the two-point function has a characteristic p−4 behavior.
The pro�le function will then asymptotically match the result we already derived in Sect.
5.1, for the logarithmic case, displaying a 1/E fall o�.

Using the two-point function as above, the equation for the detector rate gives

Ḟ =
−i
2π3

ˆ ∞
0

dξξ2

g(ξ2)

ˆ ∞
−∞

dτe−iEτ

(
K1(2iξ

a sinh (a2 (τ − iε)))
2ξ
a sinh (a2 (τ − iε))

− K1((τ − iε)ξ)
(τ − iε)ξ

)
, (9.47)

from which we arrive at the pro�le function

F(E) = − 2

π

ˆ E

0
dξξ

√
E2 − ξ2

g(ξ2)
. (9.48)

In principle this relation gives the exact form of the pro�le function in Causal Set Theory.
Its evaluation requires the full form of g(ξ2) and cannot be based on the asymptotic ex-
pansions (

asymptotics
9.46) alone. Performing the resulting integral numerically is beyond the scope of

the present work. Instead we will focus on a simpli�ed model which allows for an analytic
treatment.

A consistent toy model

The central properties of the two-point correlation function for Causal Sets (
2pointcausal
9.44) are

captured by the combination of a massless pole at zero mass combined with a continuum
of states with density ρ(m2)

Saravani:2015rva
[75]. The resulting positive frequency Wightman function

is then given by the sum of the massless one, denoted by G
(0)
+ and an integral over the

continuum of states

G+(t, ~x) = G
(0)
+ (t, ~x;m = 0) +

ˆ ∞
0

dm2ρ(m2)G
(0)
+ (t, ~x;m) , (9.49) wfcaus2

15We set everywhere the sprinkling density ρ to one.
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where G
(0)
+ (t, ~x;m) denotes the Wightman function for a scalar of mass m. Inspired by

Saravani:2015rva
[75] it is conceivable that all relevant physics of the Causal Set construction is retained by
approximating the density of states by

ρ(m2) = e−αm
2
N∑

n=0

bnm
2n . (9.50) rho

Here α is a parameter of order one, b0 is related to the nonlocality scale, and the remaining
bn's are free parameters.

As a consistency requirement, the simpli�ed model should recover the massless theory
in the infrared limit. This is ensured by requiring that the continuum contribution to
(
wfcaus2
9.49) vanishes in the limit where the geodesic distance Z ≡ (t − t′)2 − (~x − ~x′)2 goes to
in�nity. Substituting (

rho
9.50) into (

wfcaus2
9.49) this condition entails

lim
Z→∞

N∑

n=0

bn

ˆ ∞
0

dme−αm
2
m2n+2 K1(im

√
Z)√

Z
= 0 . (9.51) IRcondition

Applying the expansion of K1(x) for large argument the resulting integral reduces to a
representation of a Γ-function and falls o� as Z−3/4 independent of n. From this, it
follows that imposing a classical asymptotic behavior in the infrared does not constrain
the parameters bn.

16

Evaluating (
spectralF
7.10) for (

wfcaus2
9.49) yields the pro�le function for this model

F(E) = E +
N∑

n=0

bn

ˆ E2

0
dm2 e−αm

2
m2n

√
E2 −m2 . (9.52) csmodel

At this stage, it is instructive to study the case N = 1 in detail. Setting α = 1, the two
integrals can be carried out explicitly, giving rise to imaginary error functions

I0 ≡
ˆ E2

0
dx e−x

√
E2 − x = E −

√
π

2 e−E
2

Erfi(E) ,

I1 ≡
ˆ E2

0
dx e−x x

√
E2 − x = 3

2E −
√
π

4 e
−E2

(3 + 2E2) Erfi(E) .

(9.53) int1

Expanding the integrals at E = 0 one has

I0 ' 2
3E

3 + . . . , I1 ' 4
15E

5 + . . . . (9.54)

Thus the low-energy behavior is governed by the massless contribution, independently of
the values b0 and b1. Looking at the asymptotics of the integrals (

int1
9.53) for E2 � 1, one

has

I0 ' E −
1

2E
+ . . . , I1 ' E −

3

4E
+ . . . . (9.55)

Hence, for generic values b0, b1 the asymptotic scaling for E � 1 and E � 1 is identical. In
these cases there is no change in the Unruh dimension. For the special value b1 = −(b0+1),
however, the leading term in the high-energy expansion cancels and the asymptotics of the
pro�le function reads

F(E) =
b0 + 3

4E
+ . . . . (9.56)
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Figure 12: Pro�le function F(E) and Unruh dimensionDU arising from (
csmodel
9.52) with b0 = 1,Fig.causal

b1 = −2 and bn = 0, n ≥ 2.

Thus, for this case the model matches the Unruh rate expected for Causal Set Theory.
Setting b0 = 1 the full pro�le function is shown in Fig.

Fig.causal
12. Both the pro�le function and

the Unruh dimension undergo a transition when the energy scale meets the discretization
scale controlled by setting b0 = 1.

10 Conclusions and outlook
sect.5

Due to the geometric nature of the Unruh e�ect, the radiation temperature (and thus
the number operator) is protected against corrections originating from extra dimensions
and mass terms. In order to capture possible signatures induced by quantum gravity, we
investigated the relation between quantum gravity inspired models exhibiting dynamical
dimensional �ows and the Unruh e�ect. Since both the detector approach to the Unruh
e�ect and dimensional �ows originate from a non-trivial momentum dependence of the two-
point correlation functions there is a natural connection between the two. Explicitly, we
focused on two-point functions arising within the context of phenomenologically motivated
models for dynamical dimensional reduction, multiscale models, Kaluza-Klein theories,
spectral actions, and Causal Set Theory. From the viewpoint of two-point functions, these
models come in two distinguished classes. In the �rst case the inverse two-point function
has a polynomial expansion in momentum space. This case is realized within dynamical
dimensional reduction, multiscale models, Kaluza-Klein theories, and certain classes of
spectral actions. It is also realized in theories that break Lorentz invariance, which we
did not touch upon.17 The models forming the second class possess two-point functions
which are quasi-local in the sense that their inverse consists of a �rst order polynomial
multiplying a function which is analytic in the complex plane. This setup is realized by
Causal Set Theory. Our study of these models exhibits two universal features. First,
despite incorporating quantum (gravity) corrections in the two-point function, the Unruh
radiation remains thermal in all cases. Moreover, the low-energy spectrum is robust with
respect to corrections of the two-point functions at high energies, i.e., the response of an
Unruh detector is not modi�ed below the characteristic scale where the dimensional �ow
sets in.

The two-point functions occurring in the �rst class of models can be reduced to a sum

16 Alternatively, one could notice that the limit in (
IRcondition
9.51) is formally of the same type as considered in

Appendix A of
Aslanbeigi:2014zva
[31], and thus one can apply the same manipulations to conclude that the limit gives zero

irrespective of n.
17 There is a vast literature on this class of models. See for instance

Rinaldi:2008qt,Majhi:2013koa,Gutti:2010nv,Agullo:2008qb
[43, 76, 77, 78]
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of (massive) second order propagators through an Ostrogradski-type decomposition. In
this case we derive a master formula which expresses the response function of the Unruh
detector as a function of the mass poles. Rather than explicitly calculating the response
functions, we used the KMS condition to relate the induced emission to the spontaneous
emission, where the factor of proportionality is exactly the Planckian distribution. We
then calculated the spontaneous emission by approximating the pro�le function. In the
case of a massive scalar �eld the approximation and numerical result agree for small values
of a

m , while in the high energy limit the two coincide.
As a generic feature, one �nds that dynamical dimensional reduction leads to a suppres-

sion of the Unruh e�ect at high energies while the opening up of extra dimensions leads to
an enhancement above the compacti�cation scale. In particular, models where the spectral
dimension asymptotes to Ds → 2 at high energies also exhibit a universal fallo� in the
rate function (

defresf
6.32) of the Unruh e�ect F(E) ∝ 1/E. We proposed here to quantify this

non-trivial asymptotic behavior of the pro�le function through a new parameter, which
we called the Unruh dimension of the system. This is de�ned through the scaling of the
pro�le function, as in (

UnruhDimension
8.7). Di�erently from other proposed parameters characterizing

the high energy behavior induced by quantum gravity e�ects, this one is directly related
to a physical quantity that is accessible experimentally, at least in principle. Moreover, it
is directly related to the spectral dimension via the relation (

dimrel
9.11). The speci�c examples

studied in this paper already indicate that di�erent quantum gravity models come with a
very distinguished signature in terms of their Unruh detector response function. This may
serve as an interesting starting point towards identifying universal features among di�er-
ent approaches to quantum gravity. This requires the computation of positive-frequency
Wightman functions within di�erent quantum gravity programs.

Obviously, it would be quite natural to apply the formalism developed in this paper to
the gravitational Asymptotic Safety program

Niedermaier:2006wt,Codello:2008vh,Litim:2011cp,Reuter:2012id,Reuter:2012xf,Nagy:2012ef
[79, 73, 80, 81, 82, 83]. In this context, the

momentum dependence of two-point functions has recently been studied in
Dona:2013qba,Christiansen:2015rva,Meibohm:2015twa
[84, 85, 86].

It is clear that an investigation of the Unruh e�ect should be based on the renormal-
ized propagators where all quantum (gravity) �uctuations have been integrated out. The
corresponding expression for the positive-frequency Wightman function is currently not
available. Nevertheless, much progress has been made in recent years towards the con-
struction of renormalized two-point functions taking quantum �uctuations into account
Codello:2013fpa,Christiansen:2012rx,Christiansen:2014raa,Christiansen:2015rva,Meibohm:2015twa,Eichhorn:2016esv
[87, 88, 89, 85, 86, 90]. On this basis, we expect that it is feasible to compute the �ngerprints
of Asymptotic Safety in the Unruh e�ect. This may also be relevant for understanding the
fate of black holes within Asymptotic Safety

Bonanno:1998ye,Bonanno:2000ep,Bonanno:2006eu,Reuter:2006rg,Reuter:2010xb,Becker:2012js,Falls:2012nd,Becker:2012jx,Koch:2013owa,Koch:2014cqa,Saueressig:2015xua
[91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101]

based on �rst principles.
Another natural extension of our work is the application to Hawking radiation. Here it

was argued that the low-energy Hawking spectrum is actually insensitive to Planck scale
e�ects

Agullo:2009wt
[102]. The situation is quite similar to the one encountered in the present work,

where the Unruh spectrum at energy scales below the scale where the dimensional �ow sets
in is actually unaltered. At the same time there are indications that quantum gravity e�ects
could stop the black hole evaporation process and leave a cold remnant. In particular, it
was argued in

Carlip:2011uc
[103] that the black hole evaporation could come to an end once the spectral

dimension drops to Ds = 3. This would be relevant for the information problem as well
Chen:2014jwq
[104]. Applying the techniques based on two-point correlation functions used in the present
work may actually allow one to develop these ideas based on a �rst-principle calculation.
We plan to come back to this point in the near-future.

Finally, we have not analyzed the class of models displaying a minimal length. These
models are important for quantum gravity phenomenology, since this e�ect is believed to
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appear quite generically
Garay:1994en
[105]. It would be interesting to see if a connection to our results

can be made.
From an experimental point of view, multiple proposals have been made to acquire

experimental evidence for the Unruh e�ect. Most of these proposals focus on the detection
of the Unruh e�ect through other phenomenologically detectable e�ects (e.g. the Berry
phase

MartinMartinez:2010sg
[39], the use of the Sokulov-Ternov e�ect

Akhmedov:2006nd
[36]). Practical issues naturally arise as a

result of the small imprints left by the Unruh e�ect. Corrections to the Unruh e�ect as a
result of processes taking place near the Planck-scale will then be even harder to detect
with the technology currently at our disposal.
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