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Abstract: A common feature shared by many quantum gravity models is modifications
of two-point functions at energy scales around the Planck scale. Generically, these modi-
fications induce non-trivial profiles for the spectral dimension characterizing the underly-
ing quantum spacetime. This thesis investigates the consequences of these modifications
within the Unruh radiation detected by an accelerated detector in Minkowski space. While
the Unruh temperature, as a purely geometric effect, is protected from quantum gravity
corrections, the induced emission rate of the accelerated detector receives distinct correc-
tions in the prefactor multiplying the Bose-Einstein distribution. Essentially, the modified
two-point functions change the effective dimension of spacetime seen by the accelerated
detector. The resulting Unruh dimension has a close relation to the spectral dimension
commonly measured in quantum gravity models.
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intro

1 Introduction

Quantum gravity, as the name suggests, focuses on the quantization of gravity. There are
numerous reasons for pursuing this endeavour, while simultaneousl th.ﬁre ape reasons as
to why gravity on microscopic scale does not seem to effect daily life %T n particle physws
the effects of quantum gravity are (usually) negligible as the energies encountered in the
corresponding experiments are well below the Planck energy scale. For the Planck length,
time and mass

G\ ? Lp hTp
Lp=|— Tp=—, Mp=—- 1.1
P < 3 )  Tr="0 Mp=79m (1.1)
the Planck energy is defined as
Ep = Mpc? ~10GeV. (1.2)

Keeping in mind that most particle experiments are still in the range of 10*GeV, it should
not come as a surprise that trans-Planckian events are not (directly) measurable. One pos-
sibility to establish quantum gravity effects is by attempting to recognize ultra-violet (UV)
contributions that propagate through to lower, detectable energies. To accomplish this,
it is necessary to construct a theoretical framework describing physics on trans-Planckian
scales. One could of course wonder where the expected breakdown of the present model
comes from. That is: what keeps us from simply quantizing general gravity following the
procedures dictated by quantum field theory? As in general relativity it is the metric that
describes the gravitational field, quantization of this field could be interpreted as the quan-
tization of geometry. This approach is known as covariant quantization and suffers from
conceptual problems rendering it inadequate. The route to follow requires a perturbative
description of the theory (metric) in terms of E/Ep, where the series would be truncated
once the desired order is reached. The resulting theory would be an effective field theory,
valid below and up to the perturbation order. While this may work for other theories, a
gravity-specific difficulty arises once we pass the Planck scale as there F/Ep ~ 1, indicat-
ing we are dealing with a non-renormalizable theory. This tells us that the effective field
theory is no longer valid and any predictive properties are lost. It is expected then that
at these high energies (small distances) scales, there is a range of degrees of freedom that
make their appearance while remaining concealed at low energies (long distances).

Another conundrum arises when one tries to define observables in a theory of quan-
tized gravity. As in the classical limit (e.g. general relativity) the theory is required to be
diffeomorphism invariant, it seems reasonable to demand the same for its quantized exten-
sion. Consequently, it seems reasonable to demand that any theory of quantum gravity
is background independent i.e. quantum observables should be background independent.
Then there is the question of locality as well. How can one define what is local and what
is not if there is 1o unlg&w coordlnate frame to depend on?

In section Tt Wil o o own that equal-time canonical quantization can be applied
if one chooses a spacetime that admits a Cauchy surface (e.g. the spacetime is globally
hyperbolic). If there is no such Cauchy surface, however, applying equal-time canoni-
cal quantization would violate diffeomorphism invariance and lead to an ill-defined time
evolution of the theory.

Different theories trying to resolve these proqlggr%s: lS@nd many more) are at the moment
under construction. For later reference, Sect. consist of a compact collection of
multiple such theories.

To study effects originating from quantum gravity, one can analyze dimensional flows.
Dimensional flows are a feature commonly encount%edlln ‘ébr&éﬁ”&%l p%r%a%hes to quan-
tum gravity and quantum gravity inspired models [2; 3], The most promlnent example of




a dimensional flow occurs in Kaluza-Klein theories where the dimensionality of space-
time increases below the compactification scale. An even more intriguing phenomenon of
this form is dynamical dimensional reduction where a specific dimensionality of spacetime

decreases at short distances. The pro Ott> p}g&i O%a‘}mple for this mechanism is provided
by Causal Dynamical Triangulations [4] where a random walk sees a two—dimensioE

. Rk R L . . i allforn:2005db
s;‘)ac.etlme at short distances Wh%le long Walk.s exhlblt‘Lgusfggerf:di%ggzsi gl?flelb:%?}/ég};l{ mmpm, ca
T L 3 A1 B R SH A SRR bl S ot e 1O MM T 3T 300, Car ip: 2015
iy WOCHE 02 R Horevashutetity sy 1o 16, G Bt Aoy [TGTS 00
(oSO SHAGS 12 ho 00,62 - paHaCORIRMIAEYE, scometry [, 4], non-focal theories
1250 126], mini tz;ilc{(e:qgggsgnodels [27], and based on the Hagedorn temperature seen by a
gas of strings [28].

The i digg:tgreccgrlgflonly used to study dimensional flows is the spectral dimension
(see Sect.mcally Euclidean) quantum spacetime is equipped with an artificial
diffusion process for a test particle. One then studies the return probability of the particle
as a function of the diffusion time o. The mathematical definition of the spectral dimension
ds is obtained in the limit of infinitesimal diffusion time ¢ — 0. On a manifold the spectral
dimension agrees with the topological dimension d. In the context of quantum gravity,
where the properties of the underlying spacetime may depend on the length scales probed
by the diffusing particle, it is useful to define a generalized spectral dimension D¢(o) where
the limit o — 0 is omitted. The most common behavior of Ds(o) encountered in quantum
gravity interpolates between Dy = 4 on macroscopic scales and Dy = 2 at short distances.
This observation has also triggered the investigation of multi—scalﬁC ecoan%leitgs%%%ving as a
phenomenological model of quantum gravity inspired spacetimes [29]. B

The spectral dimension bears a (éLo:%%relation to the two-point correlation function G
of the diffusing particle (see Sect. 2[for a Tecap on Green functions). For a massless scalar
particle propagating on a four-dimensional Euclidean space one has G = p~2, which leads
to a scale-independent spectral dimension Dy = 4. Non-trivial D,-profiles are created if
the two-point correlation function acquires an anomalous dimension. Based on this close
connection, the interpretation of the spec‘%nzliellcll}lrgl_%nmsniﬁria% &PS%; Igausdorff dimension of the
momentum space has been advocated in [30]. " Note that a non-trivial spectral dimension
does not necessarily involve the breaking of Lorentz invariance, since G(p?) may be a
function of the momentum four-vector squared and thus a Lorentz invariant quantity.
However, this function can in principle have more general forms than those allowed in
a local quantum field theory. One relevant example is a two-point function arising in a
nonlocal field theory, defined as a theory whose equations of motion have an infinite number

. . . K L. . . \Rsign elgl:%giiéva
of derivatives. This form is ubiquitous in Causal Set studies [31I].

The fictitious nature of the diffusion process underlying the spectral dimension then
raises the crucial question whether the flow of the spectral dimension can be seen in a
physical observable quantity. The main goal of this research is to explicitly demonstrate
that this is indeed the case: the non-trivial momentum profiles leave an imprint in the
Unruh effect felt by an accelerated detector. More precisely, the effective dimension of
spacetime seen by the. Lipuh detegt oL Io delstin Sl hSRAq Ut sgnension.

The Unruh effect [32]133] 34| (also see [49; 35] Tor reviews) 1s one of the most intriguing
phenomena occurring within quantum field theory in Minkowski space. Essentially, it
predicts that to an accelerated observer (Rindler observer) the Minkowski vacuum appears
as a thermal state whose temperature is proportional to the acceleration parameter. This
acceleration radiation can leave imprints in a variety of phenomenological contexts: for
instance in the transver‘iﬁ}ggé%gi:zﬁ%gé)&%{ele(&tro% o%lﬁi positrons in particle storage rings

hmedov:
(Sokulov-Ternov effect) [36], 137, at the onset of quark gluon plasma formation due to heavy




harzeev:2005iz
ions collisions K{I{S , on the dynamics o e%ectirong oy %enmng traps, of ultra-intense lasers,
Ir Nno.: e
and atoms in microwave cavities (see [49]. referepaes therein), or in the Berry phase
rtinMartinez: sg

acquired by the accelerated detector [39]." Recently it has also been shown that Féleqelggﬁiaﬂ 016sym
energy signatures of Unruh radiation are very sensitive to high energy nonlocality [40].
On theoretical grounds the Unruh effect can be derived by defining creation and an-
nihilation operators with respect to the positive and negative frequency modes associated
with the Vu gfgg%vys% O%lgl Rindler space and relating tlré@cl:n uglk{ﬁlough a Bogoliubov transform,
see e.g. |41 Tor a pedagogical exposition or Sect. e origin of the thermal spectrum
is essentially geometrical, in the sense that it depends solely on the presence of a horizon
in the Rindler frame. As a geometric effect, the Unruh temperature is insensitive to the
specific form of the Lagrangian or the interactions under }PIIL_SquB%EIaOCH and thermality of

1.
the spectrum is essentially ensured by Lorentz invariance

42[. It will be shown that this
also holds for the broad class of quantum gravity corrections considered in this Work.E]
While not affecting the thermal nature of the Unruh radiation, quantum gravity induced
modifications of the two-point function affect the profile functions multiplying the thermal
distribution in a more or less radical way.

In order to make the connection between dimensionwz Qs &%cli modifications in the
Unruh effect as close as possible, the detector approach [45] will be followed. The central
idea is to consider a detector made from a two-level system with an upper, excited state
2 and a lower state 1 being separated by the energy AE = Fs — E; > 0 coupled to a
scalar field. The transition probabilities induced by the scalar can be expressed in terms of
the positive-frequency Wightman function of the Minkowski vacuum state. The emission
rates of the detector can be computed by evaluating a Fourier transform of the two-point
function along the worldline of an accelerated observer. For a standard massless scalar
field, it is then rather straightforward to show that the Green’s function Valu%féi on
the worldline satisfies a Kubo-Martin-Schwinger (KMS) condition (see Sect.e@iwhere
the periodicity in Euclidean time depends on the properties of the worldline only. The
resulting Unruh temperature is proportional to the acceleration a. This setup also makes
clear that corrections to the two-point functions, e.g. induced by quantum fluctuations
at small scales, may leave their fingerprints in the transition rate of the Unruh detector.
Both, a dynamical dimensional flow and corrections to the transition rate, can be traced
back to the same source: a non-trivial momentum dependence of the two-point function.

In this work the focus will lie on the asymptotic structure of the detector-induced
emission rates in a fixed Minkowski backgroundﬂ We will show that different types of
dimensional flows leave distinct signatures in the detector rates. In particular, in the case
of dimensional reduction at high energies, one finds a suppression of the rates, whereas
for a dimensional enhancement at high energies, as in Kaluza-Klein models, the rate in-
creases. Since the transition probability of the Unruh detector is clearly a signature which
is observable at least in principle, we expect that it can be used to make phenomeno-
logical predictions from quantum gravity, allowing a direct comparison between various
approaches. ] )

The first half of this thesis (Sect. @et%—'ggt. @%T'%Gbe seen as a pedagogical introduc-
tion of c&r}ag?ts and tools needed to acquire the results derived in the sections that follow.

Sect. ﬁ shortly recaps the qu ntization roaflmassless scalar fields in Minkowski and curved
Eé derives th

spacetime, after which Sect. e diffusion equation and discusses the origin of

Rinlzflo i?%g% Stidiey }Iﬁﬂ%&gﬁl@}& 1?{1%958%%%1(3 dispersion relations and a minimal length scale see
’[ 45] 2 ;]

5 ]

2 et . . 5 . .
Throughout the \jvork, effects relfited to the sw1t.ch1ng function X’\ﬁ%}%lgyn%arzlrtf?getzh&6%‘91{{%.91{1&@0%%: 2013uia
of the detector coupling strength, will not be taken into account. See [[46} 47| for details.




the spectral dimension Ql%n diffusion processes. For later purpose ;r%lte: MS condition

is derived in Sect. %.—As a final part of the introduction, Sect. 1scusses the basic
concepts of quantum I‘%\él% ral{ahd approaches therein followed by a direct derivation of the .9
Unruh effect in Sect. %.Q—T'heiorlginal research carried out is organized as follows. Sect. E
briefly reviews the detector approach to the Unruh effect. Dimensional flows entail specific
modifications of the two-point correlation functions entering into the detector approach

and we erciéf‘esthe aster 3]i)ormulau capturing the resulting corrections to the Unruh effect

in Sect. [/ In Sectr.ﬂ@%v—edreﬁne the Unruh dimension as the ﬁ%(%‘qizlve dimension seen by

the detector and relate it to the spectral dimension. In Sect. P@Ewieapply this formula to .,

specific examples taken fro lclei]somenologically motiv te(jC Iﬂﬂti—scale models (Sect. ;
altu@—Klein theory (Sect.%ﬁ)ectral actions (Sect. %ﬁd thusal Set Theory (Sect.
“We close with a brief discussion of our findings in Sect. ili) '

2 Quantum Field Theory

In this section, the general methodology for second quantization is briefly reca, ped. The
first half covers the quantization of a scalar field ¢ on a Minkowski background 48], whereas
the second half generalizes the developed methodologies to curved backgrounds given cer-
tain specific conditions on the curved manifold.

2.1 Scalar field quantization in Minkowski spacetime

There are two essential requirements the quantized fields will have to meet; Lorentz in-
variance (i.e. spacetime obeys Poincaré symmetry) and causality. One can then take a
Hilbert space constructed of relativistic particle states and define fields to gain a notion of
observables acting on the Hilbert space. For example, a free scalar field is classically an
infinite collection of Harmonic oscillator modes, with Hamiltonian

H= %pQ + %mw2q2, (2.1)
where p is the momentum and ¢ a coordinate in real space. To quantize, one can pro-
mote the Hamiltonian, momentum and space coordinate to operators, (¢,p) — (¢,p) and
demanding p and ¢ satisfy [§,p] = il. The momentum and space coordinate can then be
defined in terms of a' and @, the creation and annihilation operators respectively. Doing

so leads to 1 1
H':—AQ—&—f 262, 2.2
2mp 2mw 4 ( )

Introducing creation/annihilation operators yields

. _a+al . a+al 2.3)
= , = —iw , .
I V2w b V2w
such that the (discrete) bosonic commutation relations are satisfied: [a,af] = 1. The

subtlety here is that there are an infinite number of linear oscillators that need to be
quantized (i.e. there are infinitely many degrees of freedom). However, as the theory
under consideration is a free theory, the degrees of freedom evolve independently. To see
this, consider a field component satisfying the Klein-Gordon equation; (O+m?)f(#,t) = 0



where f(Z,t) € R. Performing a Fourier decomposition gives

f(@1) = / (;ff)gg@ 9, (2.4)

where now for each Fourier mode p'= (py, pz, p-) the Klein-Gordon equation
(07 + (0" +m?) g(5.t) =0, (25)

is satisfied by g(p,t) with frequency w = y/p? + m?. As the modes are now decoupled, the
general solution to the Klein-Gordon equation is that of a linear superposition of harmonic
oscillators. This justifies the quantization procedure as described above.

Making the transition from discrete to continuous, the position operator § becomes a
field

2 dp 1 (. 5z .t _igz
where now
lag, ab) = (2m)% (5 — )1, (2.7)

So far the fields exhibit no time dependency yet. To discuss the consequences of causality,
however, a time dependent formalism has to be developed. Suppose then that the field
under consideration has a time dependence, i.e. ¢ = ngS(:c) = ngS(:E', t). As the time evolution
of operators is described by means of the Hamiltonian operator, letting H work on the
creation /annihilation operators would give the time dependent field. In this procedure one
makes use of the fact that [H, ap] = —way and [H, d;] = wd;. By repeatedly applying H on
ay and &; (or equivalently, on ¢2), the exponential map of H can be constructed such that

the evaluation of ¢(z) = emtq}(f)e*im can be performed. One can also take a different
route and use the Lorentz invariant momentum space measure

4 4 —w w
[ st - wrew) = [ ok (M AT o)

_/ 1
) 2m)3 2w

Note that the Heaviside step function restricts p? to be positive and thus the second delta

function drops out when m is real. Applying this to ¢ results in

(2.8)

2 dp 1 —ipxz | AT ip-m)
= [ —=—|a . 29
00) = [ g (awe e v alers) 2.9)
To check if this formalism respects causality, one can evaluate [¢(x), d(y)] and check
whether it gives zero when (z — y)? < 0 (i.e. for spacelike separations of the spacetime
points x and y). In the explicit check, one can use that

_ [Pl iy ip(a—y)
(y):| N / (271')3 2w (6 € )pgzw, (210)

X X X -LorInv X .

is Lorentz invariant due to @.—ﬁﬁother useful property is that taking z — —z, y — —y
yields the same expression if xg — yo = 0. This can be checked by taking p — —p. As
for (z — y)? < 0 there is always a Lorentz transformation such that zj, — y) = 0, the

RS

$(a),



. :LorInv .
commutator above indeed evaluates to zero. Furthermore (ﬁgi can be used to derive the
1-particle completeness relation by considering that

’5>=/(dp) ! 15 (plk) (2.11)

which implies a completeness relation of the form

i= [ ol h 2.12)
(2m)3 2

Note that in the examples above, there is a notion of locality in the sense that the La-
grangian contains no interaction terms that couple a field at spacetime point z to a field
at spacetime point y.

An alternative route to quantization would be to start out with a classical field theory
that already satisfies the requirements imposed by relativity and apply canonical quantiza-
tion to the fields. In the case of the free Klein-Gordon theory, this entails starting out with
the classical Lagrangian for a real scalar field and extracting the Klein-Gordon equation
by means of the Euler-Lagrange equation. The fields ¢; and their conjugate momenta
T = Ot become operators that satisfy the equal time canonical commutation relations,

- [65(x), 71 (y)] —’M%kd (T —7),
[65(x), dr(y)] = (2.13)
[7(2), 7 (y)] =

where the labels 7 and k rever to the jth and kth field.

2.1.1 Two-point functions

To evaluate the vacuum expectation values of free fields, (0] [p(x), ¢(y)]]0), it is necessary
to invert the equation of motion of the theory. In the case of the free scalar field, this
entails constructing the Green function of the operator (O + m?2). Let G(x — y) be this
Green function in real space and G(p) denote its momentum space representation, that is

. d4p = —ip(z—
iGle =) = [ GG
where (2.14)
~ 7

(- +m*)Gp)=—i = Gp) = e

here G(x — y) is the Green function in real space, see Fig. @Lnghe integral over G contains
divergencies at pg = w and pg = —w which cause the Fourier integral to blow up. To
obtain a finite result, the contour integral procedure is implemented. There are several
options one can choose from to circle around these poles, depending on the type of process
under consideration (e.g. depending on the boundary conditions). For taking into account
influences from the past, the poles are shifted into the negative imaginary part of the
plane by an amount ie which is taken to zero after integration. The resulting contour
integral carries the name retarded Green function Gr(z —y) = —0(2° — y*)G(z — y). The
exact opposite procedure, i.e. shifting the poles upwards along the positive imaginary axis,
takes influences from the future into account z}gld s known as the advanced Green function
Ga(z—y) =0(y° —2°)G(x —y), see Fig. %gT'hTGTeen function G(x —y) can be split into
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a positive/negative frequency part, i.e. a contour integral that circles around the pole in
the positive/negative real part of the plane. These positive and negative frequency parts
are denoted as G (z —y) = (0| ¢(z)d(y) |0) and G~ (x — y) = (0| d(y)p(x) |0) respectively,
satisfy iG(z —y) = Gt (z —y) — vagf Ht%c)mand are referred to as the positive and negative
Wightman functions, see Fig. ﬁg?\_ngﬂﬁuseful contour is the Feynman Green function
G'r(x —y) which can be constructed from the Wightman functions as Gp(z —y) = 0(2° —

yO)GJri. fx_F—e i i a—IFmH(yO — 229G~ (x — y) and yields the time-ordered product of the fields, see
Fig. '

2.1.2 Killén-Lehmann spectral representation

For later purposes, it is convenient to introduce the Kallén-Lehmann spectral represen-
tatton. When dealing with a theory that allows interaction terms, the Kéllén-L.ehmann
spectral representation gives the form of the Green function in terms of a sum over Green
functions describing a free theory. Consider the vacuum expectation value of a complex
scalar field, whit groundstate [Ags), (Aas|@(@)o!(y) [Ags), which can be rewritten by
using the completeness relation

; dp | Ap) (Al
L =[Xgs) (\asl| +2A:/ K T/\pv (2.15)




mto
Aas| (@) (y) Aas) = (Aas| (@) [Aas) (Aas| o' (y) [Aas)

i (Aas| 9(@) [Ag) (Ml 61 (y) [ Aas) (2.16)
+;/ 2n)?

2B ’

Here |Ags) denotes the ground state of the interacting theory (the free theory equivalent
would be [0)), |A\z) denotes an excited state and Ex = y/p? +m3 with m, the mass

belonging to a zero-momentum state (i.e. pi = (my,0)). Note that m, cannot be thought
of as the mass belonging to a particular particle as the theory under consideration is an
interacting theory. If the sum over A yields a complete set of states and if these states
are eigenstates of the momentum four-vector, then on the account of invariance under
translations and Lorentz transformations, it is possible to write

(Aasl d(x) [Ag) (Ml (1) [Aas) = (Aasl €T d(a)e™ % |Ag) (gl e F 46T (9)e ™Y [Aeis)
= ¢ P (AGs| $(0) M) (Al 61(0) [Acis) o
=Ey
(2.17)
Here P is the generator of spacetime translations such that P* = (H — Eyl, P) with
eigenvalues p* = (E — Ep,p). As mentioned before, the purpose of the Kéallén-Lehmann
representation is to write an interacting theory as a sum over free theories. To meet this
requirement, it is necessary to rewrite the expression above in terms of A5 instead of Aj.
Let U(A) be the (unitary) boost operator, then one can show that U(A) IAg) = [Ap) by
using that the generator P“,A and thus its eigenvalues, transforms as a contravariant vector
under boosts, i.e. U~Y(A)PFU(A) = A¥,P”. Likewise, the ground state of the theory
|Ags) should be invariant under the Poincaré group, suggesting that e!% |\gs) = |Ags)
and U(A) |A\gs) = |Ags). Taking this into account, those brakets containing an excited
state become
e~ (Ags| 5(0) | \p) = e~ PT \gs| UTLUG(0)T T | M)

po=Ey

= e (Aas| 6(0) A g)

o, (2.18)

= e " (Aas| 6(0) |Ag)

)
pO=Ey

where in the last line thg_ ;,orentz transformation was chosen such that Ap = 0. For the

ground-state term of , one can write

Aaslo(@) [Aas) = (Aas| 6(0) [Aas) = vev. (2.19)

The vacuum expectation value (vev) of gZ; yields a delta function and in most cases it is
subtracted by redefining the field ¢(x) — ¢(x) — vev. Assuming this has been done and
that 20 > ¢/°, becomes

An 7} , 5 RSPl
sl 801610 ) = 3 [ A e-itemn sl SO 051 810) )
A

- . 2 dp e~ (@=y)
- z)\: ’O\GS’ %(0) ’)\0>’ / (2m)4 p2 — m3 + ie

=/O AP p(p?)GH (x — y; 1?),

(2.20) ’ eq:spectralder

10



where G is the positive-frequency Wightman function and

p(5%) = 3506~ m3) |01 40 1Ag)| (221)
A

i knogvcgclrgf dggsei 8 ectral density with squared invariant mass p?. If instead 3° > 20 in
(E?(H, the above equation would have yielded the negative-frequency Wightman function

G™.

2.1.3 KMS condition

The KMS (Kubo, Martin-Schwinger) condition provides a description of (thermal) equi-
librium states without having to restrict oneself to systems with a finite number of degrees
of freedom. In general it is the Gibbs’ distribution that is most commonly used to describe
equilibrium states. For the case of a canonical ensemble, the probability of a system X
being in the non-degenerate state z (or the random variable X to have value z) is given
by

P(X = 2) = ¢ BB, (2.22)

Z
Here § is the inverse temperature, F is the energy of the state z and Z = Tre #F is the
(normalizing) partition function. Problems arise when one takes the thermodynamic limit
(taking the size to infinity) and thus an alternative procedure is needed.
For an observable O, the time evolution can be written as

6,(0) = eftpe i, (2.23)
and a Gibbs state wg of the observable O is defined as:

A 1 A

wg(0) = ETr(e_BHO). (2.24)
If one then takes two observables O and P and, by using the cyclic properties of the trace,
computes the Gibbs state as

w/B(ét(O)P) = —Tr (e_BHelHtOe—’LHtP)

A

_ Lo ( poittris) o —ifit
T (Pe Oe ) )

= wg (Peiﬁ <t+iﬂ>oe—zﬁ<t+w>)

= wy(Por145(0)),

then the definition of a (7, 3)-KMS state can be taken as
w(Pri5(0)) = w(OP). (2.26)

The upshot of the short derivation a{l}ag&% is that when one is treating a system in a KMS
thermal equilibrium, the properE% 2.20) automatically holds. An application of the KMS
condition can be found in Sect. T

11



rved spacetime ‘

2.2 Scalar field quantization in curved spacetime

S
at quantization in curved s éiccte:tliurlr%S fMpace exhibits properties similar to those
in curved spacetime, Sect. é_mm problem of quantization in curved spacetime is that
Poincaré symmetry has been demoted from a global to a local symmetry as compared to
flat spacetime. As a consequence, it is no longer sensible to use irreducible representations
of the Poincaré group for the construction of one-particle states. One notion that we can
still depend on, however, is that of causality. To quantize a scalar field in curved spacetime,
one can develop a one-particle Hilbert space such that the field operations on this space are
causal. The simplest example one can work through is again that of the curved spacetime
Klein-Gordon equation

Even though this thesis only consid]{ ,Qﬁ&alslp%fotlillgle, it is instructive to take a closer look

(O+m?) ¢ =0, (2.27)

where [ = —¢g""V ,V,, the curved spacetime d’Alembertian. The Klein-Gordon equation
is the equation of motion of the minimally coupled action (i.e. there is only a coupling to
the invariant spacetime volume)

S = / d%@ (9" 0,00, — m*¢?) (2.28)

respecting diffeomorphism invariance. Note that in flat spacetime, diffeomorphism invari-
ance reduces to Poincaré invariance as boosts, rotations and translations allow for one
coordinate system to be transformed into another. In flat spacetime the natural next step
would be to construct the solutions to the (flat spacetime) Klein-Gordon equation and note
that there exists an isomorphism between states in the one-particle Hilbert space and the
positive frequency solutions of the Klein-Gordon equation (hermitian conjugation of these
solutions give the negative frequency modes). The existence of this isomorphism allows
for the Hilbert space to be constructed as the space of positive frequency solutions of the
Klein-Gordon equation. A similar method in curved spacetime requires one to demand
that the manifold, M, on which quantization takes place, is globally hyperbolic. Equiva-
lently, one demands that M has a global Cauchy surface. A Cauchy surface S is a spatial
slice such that for any point p € M in the future of the surface, the (past-directed) inex-
tendible curve from p to S crosses S only once. Here inextindible denotes a curve without
fixed end-points and in the particular case of a Cauchy surface the curves cannot be closed
either. If M in its whole can be described by the initial data on a Cauchy surface, then
one says M has a global Cauchy surface and is thus globally hyperbolic.

The essential consequence of the above is that it ensures the entire future/past can
be determined by the initial data on one spatial slice. One can then introduce canonical
equal-time commutators according to
i

b(z), nd,¢ =
[¢(z), n"0uo(y)ls N

[6(2), d(y)]s =0
(08,0 (x), n"dyd(y)]s = 0.

Here S is the Cauchy slice, n* the normal to the surface and h the determinant of the
induced metric on the Cauchy slice. Note that n*d,¢(z) is a (covariant) generalization of
the conjugate momenta, as in flat space the normal to the Cauchy surface is iver% bDé the
. R . R comm Curv K comm fla
time coordinate (i.e. n*0, = 0) and the equations coincide with 1i§l§; It can be
shown that if the canonical equal time commutators hold on one spacelike slice, then they

5 (Z — 7)
(2.29)
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do so on any other spacelike slice as well, given that the field, qg, satisfies the Klein-Gordon
equation.

At this stage in flat spacetime, there was the possibility to expand solutions to the
Klein-Gordon equation in their Fourier basis. In curved spacetime one has to proceed with
caution, as a Fourier decomposition might be ill defined. A strategy to circumvent this
problem, is to assume that in the far past spacetime was approximately flat, such that a
basis of solutions once existed. The next step is then to evolve these solutions forward
in time, such that they form a complete basis of solutions in the curved spacetime. The
reason this works, is exactly because the commutation relations are independent of the
spacelike slice S.

Defining the Klein-Gordon inner product of two (plain-wave) solutions to the Klein-
Gordon equation as

(up, uy ) = i/sd?’x\/ |h|n* (uy Oty — uy dyuy) (2.30)
the orthogonality conditions on the basis can be written as

(up, Uy ) = (2m)*2p 8% (P — §),
(up, ury) =0, (2.31)
<u;, u;/> = —(27)*2p" 83 (P — p).

The field gZA) is again the superposition of these solutions and the a,, a]Tg are given by

ap=(und),  ah=—(u}d). 2.32)

The difference between quantization in curved spacetime with respect to flat spacetime,
comes from the choice of basis solutions u,. In flat spacetime this choice was unique as
there is a timelike Killing vector that advocates a natural choice for the time coordinate. In
curved spacetime, however, there is no such "obvious" choice which has as a consequence
that there is no unique choice for the basis of solutions. As a result, it is not clear what one
perceives as positive/negative frequency modes and the notion of a particle becomes an
ambiguity in itself. Analogous to flat spacetime, the existence of a timelike Killing vector
(e.g. a stationary spacetime)lﬂ gives a natural choice for the basis in curved spacetime
as well. However, this Killing vector might not be well-defined globally. In some cases,
one can then perform an analytic continuation to the part of spacetime where the Killing
vector is not well-defined. A particularly interesting situation is Rindler sp Ceti%{%’: Jghere
it is exactly this continuation from which the Unruh effect can be derived [49].

3 Effective dimension of spacetime as seen by diffusion

The spectral dimension can be used to probe the possibility of dimensional reduction gen-
erated by various processes. In gauntum gravity, for example, it is a convenient tool to
determine the spacetime dimension as felt by an effective field theory in the high energy
limit. This concept can be introduced by analyzing the behavior of a test particle undergo-
ing a diffusion process, described by the so called diffusion equation (also known as the heat
equation). To derive the diffusion equation, consider a microscopic system governed by an
ensemble of non-interacting particles submerged into a fluid. As the timescales on which

31f the timelike Killing vector is orthogonal to the Cauchy surface, then the spacetime is static as well.
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the particles move and collide with one-another is significantly smaller than the timescale
on which measurements are performed (i.e. approximately a factor 10'2s smaller), the
particles seem to move randomly (that is, subject to Brownian motion). The diffusion
equation is essentially a statistical tool that allows for the description of the movement of
an ensemble of identical particles that share their boundary and initial conditions. In this
context, the solution to the diffusion equation yields a probability distribution rather than
the deterministic value for e.g. the position of a particle. To be more precise, if ¢(Z,t)
is a solution of the diffusion equation, then ¢ gives the probability distribution to find a
particle in a small neighborhood of & at a time ¢.

Rather than immediately evaluating the contin us case, it is instructive to start with
a discussion on discrete random walks, following [20[- at is, consider an infinite d-
dimensional lattice in FEuclidean space. Each site can be described by a d-dimensional
vector & = xié(i) where the basis vectors €(;) are orthonormal to each other €;) - €;) = dij,
the z' are integer multiples of the lattice spacing a = 1 (thus the lattice is hypercubic)
and every site has ¢ = 2d neighbors. For a walker moving instantaneously and at random
between neighboring sites, allowing a time interval At = 1 between every move, the prob-
ability of reaching a certain neighboring site is % = ﬁ. Furthermore, the system is set
up such that the walker has no recollection about whether the next site has been visited
previously (i.e. the process is Markovian and does not depend on the history of the walker,
with the exception of the initial site which serves as an initial condition).

Using the initial data (2, to), the conditional probability for a walker to have moved to
site 1 at time 1 is given by P(¥1,t1;%0,%0)(1,1), where the subscripts refer to the lattice

spacing and timestep. To calculate this probability, first note that

d
P(&1,t0; B0, t0) 11y = | [ 600t (3.1)

=1

the probability for a walker to be positioned at sites Zy and &1 simultaneously. Obviously
the equation above yields 1 for 1 = &y and 0 otherwise. Furthermore, the probability for
the walker to be somewhere on the lattice at time ¢; > tg is given by

ZP(flﬂfl;foﬂfo)(Ll) =1, (3-2)
Z

and yields a normalization condition. Note that due to translation invariance in both time
and space, P only depends on t; — tp and x1 — x¢. To make the transition to continuous
space, it is beneficial to relate the probabilities at different times to one another. As the
probability for the walker to be at & at time ¢+ 1 depends on whether at time ¢ the walker
was at T + €;, a neighbor of Z, the probabilities can be written as a recurrence relation

" " 1 o =
P(Z,t+ 1;Z0,t0)(1,1) = 2 ZP(x + &, t;70,t0)(1,1)- (3.3)
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To see the change in time of the probabilities, subtract P(Z, t; Zo, to)

P(Z,t+ 15 Z0,t0)(1,1) — P(%,t; %0, t0)(1,1)

d
1 e, o o
By ;P(m + €, t; 70, t0) (1,1) — P(T,t; Do, to) (1,1

d
1 o=, o o =, o -, o
= 34 [P(Z+ &,t; o, t0)(1,1) + P(Z — &, t; 20, t0) 1,1y — P(Z, %0, t0) 1,1y (3-4)
=1
1 d
- ﬁ [P(f—'_ 5ia t, -/va tO)(l,l) + P(f - g’iv ta fO) tO)(l,l) - 2P(f) ta fﬂa tO)(l,l)]
=1

= ApP(Z,t; 7o, t0)(1,1),

where Ap functions as a discrete Laplace operator. As the equation above relates a change
in time to a second order change in position, it is straightforward to generalize this equation
to its continuous equivalent

(0: — 0F) P(&,t; %o, to) (1,1) = 0. (3.5)

That is, the diffusion equation in continuous space. Here g denotes the partial derivative
with respect to to Euclidean space. diffdisc

To compute the continuous solution, first consider the discrete equation @.—PeT
forming a Fourier transformation yields

i ddE . ~
™ TPk, t; Fo, t0)(1,1); (3.6)

P(Z,t;%0,10) (1,1 :/ (2m)d

which together with

d
P(Z,t 4+ 1;Z0,t0)(1,1) = id Z (Z + €, t; To, to) (1,1) + P(T — &, ;7o t0)(1,1)) s (3.7)
implies that
(k t+ 1) Z cos ( ,t; Zo,t0)(1,1)s (3.8)
subject to the boundary condition
P(E, to; o, to) 11y = € F T or  P(&t0; @0, to) 11y = OUE—Fo).  (3.9)
The probability to find a particle at time ¢ on site ¥ now reads

T dlk (i 1 d o
P(f,t; antO)(l,l) :/ (271_)(161 (#—7o) gZCOS(kJi) . (310)

- i=1

The continuum limit in this case is given by taking the lattice spacing and the time interval
between walks to zero. For this purpose, let the lattice spacing be given by a and the time
interval by 7 such that

t—tg

w/a ddk T
P(%—Zo;t —t0)(ar —/ adei®( cos(ak;) . (3.11)
(@.r) w/a (27r)d Z
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Dividing by a? (i.e. the volume of a hypercube with an edge length a) and taking the limit,
yields

/o g oo [1E i
lim P(% — Zo;t —t0)(q,r) = lim ¢tk (@=T0) EZCOS (ak;)

a,7—0 a,7—0 —n/a (27T>d
(e} di. N -
_ / A%k i(e—s0) ,—R2(t—t0) (3.12)
o )

_ (@=#p)?
e 4(t—tg)

(47 (t — to))4/2’

. . . 2 . .
where the identification 7 = 95 was made in the expansion
t—tg

1 d T CL2 . (t—to)/T
d;cos (ak;) = (1—2dk —|—> , (3.13)

-,

—(t—to)k?

=~ e

and it was used that the resulting exponential can be written as

- _@=8)% ([ iE-T))?
ezk(:cfzo)sz(tfto) — e 4lt—to) e ( t0)<k+ 2(t—to)) , (3.14)

-z =2\ 2
after which a change of integration variables 22 = (t — tg) (k: + 22((01:9;0)) yields the desired
- uss 0)

result (ﬁﬁ.—l?or future reference, note that the spatial separation of two sites is a property
intrinsic to the manifold, while the time coordinate, ¢, is not. In this context ¢ can be
interpreted as the laboratory time i.e. the walk time as measured by an outside observer.
To avoid confusion, define 0 = t — ¢ty = t the so-called fictitious diffusion time, where ¢
was set to 0. The probability can then be written as

(F-79)?
e 4o

P(fafOQU) = W’

(3.15)
where the subscripts were omitted.

The next step on the road to spectral dimensions is to take a look at the return
probability. That is, the probability that after a given time o > 0, the walker is yet again

positioned at Zy
P,.(0) = P(Zy, To; 0) = (4mo) "2 (3.16)

Note that the return probability is equivalent to taking the trace of P

(#F—70)*

TeP (%, #o;0) = / d4zS 84z — o) = P(o, Fo; 0). (3.17)

(4mo)d/2
The mathematical definition of the spectral dimension, ds, takes the limit ¢ — 0 such that

ds = —2 lim M.

Nl
c—0 dlno (3.18)

Intuitively one takes the diffusion time, and thus the length of the diffusion path, to zero
such that the length of the path becomes smaller than the radius of curvature. In the
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case of a flat and smooth spacetime, the spectral dimension coincides with the topological
dimension of the manifold, d. Fractal spacetimes are an example where these definitions
of dimension do not (necessarily) coincide.

As for the purpose of this thesis it is the flow of the spectral dimension that is of
interest, an alternative definition where one omits the limit is considered

dIn P, (o)
dlno

eCt h 3b . . . . . . .
See Sect. é for a derivation of Dy in the context of a modified differential operator and its
relation to two-point functions.

Dy = -2 (3.19)

4 Quantum Gravity models

The purpose of this section is to give a pedagogica ig‘grgduetion to a collection of the-
ories/frameworks within quantum gravity. In Sect. ese tI%QCOEies will reappear in the
form of examples within the formulation developed in Sect. b[and onwards.

4.1 Causal Sets

One of the attempts to face some of the problems mentioned above above is posed in the
form of causal set theory [5I[." Theories within this framework are based upon the path-
integral approach to quantum field theory. Loosely said, the path-integral is a sum over
all the histories within a theory and can be used as a quantization procedure. Some of
the necessary ingredients are a history-space and a quantum measure for each collection of
histories. For example, the amplitude to go from a state defined by a metric and matter
ﬁelﬁi 1, 91 at time t; to a state at time to with metric and matter field go, ¢ is defined
as 52

(92, P2, t2|91, P1, 1) Z/D[Q}D[éf?]eis[g@], (4.1)

where S is the action, D[g|, D[¢| a measure on the history-space of all metrics and mat-
ter fields respectively. It is then apparent that the integral includes all field and metric
configurations obeying the desired boundary conditions.

The reason this quantization procedure is often favored within quantum gravity can be
granted to the fact that other quantization procedures bring technical and conceptual dif-
ficulties. Attempting to directly quantize operators renders the physical interpretation of
the theory non-trivial as a consequence of the complicated structure of the Einstein equa-
tions. Canonical quantization yields the problems mentioned above; splitting spacetime
into spatial and a temporal dimensions contradicts the fundamental principles of relativ-
ity. Nevertheless, the path-integral approach has its own drawbacks, some of which can be
avoided by treating spacetime as a discrete set rather than a continuous manifold. In the
discrete setting the path-integral becomes a sum with a natural short-distance cut-off at
the Planck-scale. It is this discrete cut-off that allows one to handle the difficulties arising
from the continuous procedure.

There are numerous discrete approaches under construction at this moment, one of
which is causal set theory. In causal set theory one assumes that a continuous manifold
has an underlying discrete structure, used to determine the history-spaces of a theory. As
the name suggests, the structure of these discrete sets is imposed by the causal ordering of
spacetime points. Given such a causal relation and a Lorentzian manifold, points on this
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manifold form a partially ordered set (poset), satisfying

Transitivity: (Vz,y,z € C) (z <y <z= 12z < 2)
Irreflexibility: (Vz € C) (x £ x) (4.2)
Local Finiteness: (Vz,z € C) (card {y € C |z <y < z} < 00).

Here z < y indicates that x is in the causal past of y. Note that the second condition
(irreflexibility) assures that there are no closed causal loops (the manifold is referred to as
weakly causal). The discreteness of the set is assured by the condition of local finiteness
where card C indicates the cardinalityf] of the set C. In the causal set context this
demand enforces that there is a finite number of points between any two points. As a
direct consequence, a causal set can only count a finite number of elements.

As mentioned before, the classical (low energy/large distance) limit of any quantum
gravity theory should yield general relativity. To assure this, the (in general shared)
view in causal set theory is that some of the considered histories have to be reasonably
well approximated by Lorentzian manifolds. To make this statement more precise, the
principles of embedding need to be invoked. For a causal set, C, to be embedded into a
spacetime, (M, g), the elements of C' have to be identified with points in (M, g) and the
order linking these elements is imposed by the causal order of the spacetime. Up till here
no discreteness scale has been introduced yet, which makes it impossible to develop an
adequate procedure for "measuring" volumes. Consequently there is no natural framework
to determine if the density of elements is such that they contain enough causal relations
to be correctly embedded into a given manifold. To resolve this problem, one sprinkles
elements into a region with a given volume. Sprinkling a manifold entails the use of a
Poisson distribution to randomly select a number of points on the manifold. The Poisson
probability distribution is given by

(pV)" eV
n!

P(n) = ) (4.3)
where n is the number of points, V' the volume of a certain region and p the sprinkling
density of the Planckian order. Omunce p and n are set, the only input for the Poisson
process is the volume V. If there is a high probability that the causal set could have
been established from sprinkling the manifold, then the manifold approximates the causal
set. The definition of a high probability is case sensitive in this context. Note that the
definition above naturally implies that the number of elements sprinkled into a given region
correspond to the volume of that region. It is then said that the causal set obeys a faithful
embedding into the manifold.

It is important to realize that not every causal set can be properly embedded into a
manifold. Even more alarming, a causal set that has been faithfully embedded into a cer-
tain region of Minkowski space might no longer satisfy the rules of faithful embedding once
some of the causal relations between points have been changed. An equivalent statement
would be that small fluctuations within the theory change the physical meaning of certain
properties. To remove the importance of these fluctuations, one may invoke the method-
ology of coarse-graining. In essence, coarse-graining a causal set C' entails the removal of
some points, yielding a new causal set C’ with lower density p’.

At this point, one might wonder what the benefits of causal set theory are. The
manner in which it distinguishes itself from, for example, lattice based theories can be

‘Cardinality is a measure for the number of elements /points contained in a set
“The theory might even be rendered unphysical if it no longer satisfies the classic limit.
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captured within the occurrence of local Lorentz invariance. In the discussion above, a lot
of attention was granted to defining a causal set in such a way that (the sprinklinf of) a
manifold can be thought of as an approximation to said causal set. This suggests that if one
considers Minkowski spacetime, the discrete theory assigned to its microscopic structure
should be such that it does not impose violation of Lorentz invariance upon the continuous
manifold. In other words, the underlying discrete theory is not permitted to invoke a
preferred reference Lorentz frame. It is not hard to imagine that a lattice based theory
would do exactly this, as its particular structure violates rotational invariance. In the case
of causal sets, however, the elements/points have been distributed randomly, leaving the
approximating Minkowskian manifold without a preferred frame.

4.2 Spectral Actions

A frequently used approach to various calcula pigt ianX&?&ﬂg%gﬂlds and their geometries
comes from the principle of spectral actions [b3[[54]. In this approach, the geometry of a
Manifold M is described through a spectral triple consisting of an involutive algebra A, a
Hilbert space H and an unbounded, selfadjoint, Dirac operator D living on H. The inverse
of the Dirac operator D can be used to construct the line elementﬂ ds and an involutive
algebra (x-algebra) is an algebra A with a conjugate linear map * : A — A such that
(ab)* = b*a* and (a*)* = a.

For a Riemannian compact spin manifold, the spectral triple is given by the A =
C>®(M) of continuous, infinitely differentiable functions on M, a spin-manifold H =
L?(M, X) of L?-spinors and D is the Dirac operator of the Levi-Cevita spin connection.
Intuitively, a spin-manifold allows for the definition of spinor bundles which in their turn
associate a spin representation to every point on M of which the elementji’ar usipilré%lsn.: %qgiaa
a mathematically precise definition of spin geometries see chapter 4 of [25]. e points
on the manifold, M, are characters of A (hence the trace over the representation ¢ of the
algebra A) which can be recognized as homomorphisms p: A — C.

To define a notion of distance, the metric needs to be defined. For a Riemannian
manifold, the line-element squared is expanded in the local coordinates to find the standard
form

ds* = G drtdz”, (4.4)

such that the distance between two points (z,y) is given by

d(z,y) = Inf/ds, (4.5)
g

that is, the length of the shortest path between z and y. In the language of commutative
geometry the distance between two points is given by

d(x,y) = Sup{[f () = f(W)l; f € A, | [D, fl I< 1} (4.6)

One of the benefits of the spectral triple approach, is that the physical action only
depends on the specipu 3 G R, 006 NCPi AR AHE din et M1 55 HRIS G SRE
the standard model \54 00|, also see [ HY, Ho[ Tor reviews.

Let S denote the action of the standard model and gravity (i.e. including the cou-
pling between gravity and matter), then there are certain symmetries that need to be
taken into account. The total action has to be invariant under the group of diffeomor-
phisms of a particular manifold M, denoted by Diff(M), and under the group G of gauge

5For a Riemannian manifold, D? o V2, the d-dimensional Laplacian
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transformations working on the matter-part of the action. Letting G work on M, one
obtains a mapping from M to a smaller gauge group G which can be readily identified
as G = SU(3) x SU(2) x U(1), the group describing the Standard Model. To find the
full symmetry group of S, it is necessary to define the concept of (inner) automorphisms
Aut(A). An automorphism can be seen as a symmetry of an object that maps the object
to itself without altering its structure. In that sense the automorphism of an object is an
isomorphism with respect to the object itself. A diffeomorphism can then be seen as an
automorphism a € Aut(A) of the coordinate algebra. In fact, for the standard model it
is the inner automorphism of A that corresponds to internal symmetries while the outer
automorphism (the quotient Aut(.A)/Inn(A)) correspond to diffeomorphisms. With this
in mind, the full group of symmetries V is given by the outer semidirect product between
G and Diff(M)

V = G x Diff(M). (4.7)

Where the outer semidirect product can be obtained from the direct product, by considering
a group A and two subgroups Aj, As that satisfy

Aq and As are normal in A,
AiNAy =1, (48)
A1Ay = A.

Then A is isomorphic to the direct product Ay x As. The semi-direct product is constructed
by taking As such that it is not normal in A, consequently elements from A; and Ay do not
necessarily commute (if they do, then the semi-direct product becomes a direct product).
A second demand on semidirect products is the existence of a homomorphism from As to
the group of automorphisms of A

¢ Ay — Aut(Ay). (4.9)
Assuming the demands above are satisfied, one can write
A= A1 A A2. (410)

The question is now whether there is a space that directly obeys the symmetry group V.
As it turns out, there is no such commutative space but there are almost-commutative
spaces that satisfy this demand.

For a given symmetry group, determining the algebra A comes down to finding an
algebra for which the automorphisms on #H are such that Aut(A) = V. In other words, the
algebra has to respect the (total) symmetry group of the theory. For the standard model
A is found to be

A=C*M)® Af, (4.11)

where Ap is a finite dimensional algebra. The Hilbert space and Dirac operator belonging
to this algebra can be found by exploiting the (tensor product) structure of A

H=L*M,X)®Hr and D=y 1+~ Dp, (4.12)

where Hp and Dy are the Hilbert space and Dirac operator on the finite space. Similarly,
L?(M, X) and @ refer to the corresponding quantities of the manifold M.

Leaving out neutrino mixing, the algebra Ap describes the underlying geometrical
definition of the standard model. It turns out that the (inner) fluctuations of the metric will

20



act:KKtheories‘

give rise to the gauge bosons, and thus one replaces the Dirac operator D by a fluctuating
Dirac operator that will be denoted as D?> = —(V? — E), where E is an endomorphism
capturing the particle content of the theory. This new expression D is a result from the
fact that the connection V is not unique on the vector bundle. The fermionic part of the
action can be written as Sp (1, A) = (1, D1p) where 1 denotes the fermion field. For the
purpose of this thesis only the bosonic (scalar% a(%tlﬁn is required, and thus the fermionic

action will not be discussed further (see Sect. he bosonic action is given by

Sp(D) = Tr(x(D?/A%), (4.13)

where A is the typical scale of the theory and y a positive, even function from R to
R such that the operator x(D?/A2) decays at +oo. The bosonic action has to respect
diffeomorphism invariance (the fermionic as well for that matter). Only the eigenvalues of
the Dirac operator satisfy this condition & priori, and thus it seems only natural that the
bosonic action yields functions of those eigenvalues that are below the characteristic scale

A.

4.3 Kaluza-Klein theories

Tn the first half of the 202 century, Kaluza noticed that a five-dimensional spacetime can be
constructed by fQ I-¢ dlmensmnal metric coupled to a scalar field and the electromagnetic
vector potential [5Y smg this setup, Kaluza was able to derive the four-dimensional field
equations, descrlblng gravity, electromagnetism and a scalar field. There was, however, a
drawback to this theory. Kaluza had to enforce the so-called cylinder condition, which
essentially states that the four-dimensional metric has to be independent of the extra fifth
dimension. As this imposed a rather extreme symmetry, the physics community started
looking for an alternative description of this fifth dimension. It was Klein that justified
Kaluza’s ansatz by suggesting to make the fifth dimension periodic and very small (e.g. he
introduced the concept of compactification).

In Kaluza-Klein theory, the fifth dimension is taken to be a circle with a very small cir-
cumference (radius) such that the metric essentially does not depend on the fifth coordinate
x°. More concretely, the five-dimensional manifold can by written as

MO = MWD U(1). (4.14)

As the fifth dimension is compact (i.e. it is the circle group), this approach was named
compactification and is nowadays frequently applied in string theory. Using the fact that
the metric is now periodic in the fifth dimension, the metric can be decomposed into its
Fourier modes as

gap(z,2° Zg gin” ) z° € [0,27R), (4.15)

where, the indices A, B run from 0 to 4, n denotes the Fourier mode and R is the com-
pactification radius. Any fields living on this five-dimensional manifold M? obey a Fourier
decomposition in the circle coordinate similar to the metric field.

o(z, x5) Z on(z) €T | x5€[0,2nR]. (4.16)

n=—oo

The Fourier coefficients ¢,,(z) depend on the coordinates on R* and are called Kaluza-Klein
modes. For a real scalar field ¢ they obey the reality condition ¢_,, = ¢;. Substituting
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this mode expansion into the action of a free scalar field in five dimensions yields

400 2
/ dx g [(0u9)? — (05¢)%] = 27R / d'x Z 3 {aw;;w : (4.17)

t.43 . . . . . .
In Sect. @Tﬁemodel above will be examined more closely, yielding the two-point function
and properties derived thereof.

5 The Unruh effect

The notion of an observer, accelerating with respect to the Minkowski vacuum, observing
a thermal spectrum of particles is known as the Unruh effect. The key to understanding
this effect is the difference between the definitions of positive frequency modes and thus
the interpretation of particles. Here we W i Lndcl)%rbv(')eo?tzhze Unruh effect for a massless and
massive scalar ﬁe]éiii%.&ni—u&—gégggsions 41]. The generalization to 3 + 1 dimensions can
be found in Sect. b.2I

The derivation starts by considering an inertial observer in Minkowski spacetime and
parameterizing the observer’s trajectory in terms of its proper time. Likewise, the trajec-
tory of an observer accelerating through Minkowski spacetime (i.e. an inertial observer
in Rindler spacetime) will be parametrized in terms of the accelerated observer’s proper
time. Of course, strictly speaking, Rindler spacetime is simply (a patch of) Minkowski
spacetime written in a different (accelerated) coordinate frame. Hence, Rindler spacetime
is flat. It is then due to Einstein’s equivalence principle that the accelerated frame exhibits
traits similar to as if it was positioned in a gravitational field (e.g. the existence of an
horizon becomes apparent). Once the parameterizations have been established, one can
apply second quantization and find the scalar fields expanded in Minkowski and Rindler
modes. As the two trajectories are related, the resulting (quantized) fields describe the
same scalar field and are thus the same. The difference between the two descriptions lies
in the definition of creation/annihilation operators and thus their vacua. By expressing
the creation/annihilation operators belonging to one description in terms of the other, the
differences concerning particle interpretation become clear. This is what is known as a

Bogolyubov transformation.

5.1 141 dimensions

In two dimensions the Minkowski metric is given by
ds® = dt* — da*. (5.1)

For an observer following a trajectory z%(7), where 7 is the proper time used to parametrize
this trajectory, the 2-velocity is given by

_odx(t) .
= 0 i), 57) 5.2

(7)

and normalised such that
Napi®i’ = 1. (5.3)

The 2-acceleration is then a® = Z%(7) and satisfies

Naga®i? = 0. (5.4)
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In the inertial frame of the observer undergoing constant a‘(’:gf;g%ation, we have (1) = 0
and thus 2%(7) = (1,0). It can then be deduced from @_ﬁh—af a®(t) = (0,a) with a a
constant. In any inertial frame we find then

’I’]algaa(T)aﬁ(T) S— (5.5)

To determine the trajectory of an accelerated observer we first switch to lightcone coordi-
nates, defined in the inertial frame as

u=t—z, v=t+zx (5.6)
-metric2d
which transforms 1'51 ;elnrfloc

1

ds? = dudv = gopdi®di? (5.7)

0 —

where £° = u, £ = v and the Minkowski metric in lightcone coordinates is

Jap = (1(/)2 162> . (5.8)

The trajectory can then be expressed in lightcone coordinates as

. X :veloci -velacc
which, together with g,g, an , yields
u(T)o(T) =1,
e = (5.10)
u(1)o(1) = —a”.
The first of these two equations gives u = % and thus i = —1.%, such that the second

equation can be used to obtain

(Z)Q =a’ (5.11)

Integration of the equation above gives the following solution for v(7)

U(T)zéeawB - v(r)zée"ﬂ (5.12)

where the integration constants A, B have been put to one and zero by performing a Lorentz

transformation and shifting the origin respectively. To find u(7) we use the relation @ = %

u(r) = —ﬁe*‘” +C = ulr)= —%e*‘”. (5.13)
The trajectory of the inertial observer has now been fully parametrized in terms of 7.
Next we will look for the comoving frame of an accelerated observer in terms of the
coordinates (£°,¢1). The coordinate system should be defined such that at &' = 0 the
observer is at rest and along the observer’s worldline the time coordinate £° should coincide
with the proper time 7. To make field quantization easier later on, we also want the metric
in the comoving frame to be conformally flat, that is

ds? = x*(€°, ") [(d€®)? — (de')?], (5.14)

where x(£°,¢!) will be found by imposing proper conditions later on. Similar to the
derivation for the inertial observer, the lightcone coordinates are defined as

f—¢, o=+¢ (5.15)

U
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:metricconformal
such that €Ccomes

In the comoving frame one has £° = 7 and ¢! = 0, yielding for the worldline

ds* = x* (@, 0)dud. (5.16)

o(r) =, u(t) =1 (5.17)
and the conformal factor along this worldline
dr* =ds* = X*(i = 7,5 = 7)dr? (5.18)

gives
a=rv=1)=1 (5.19)

Using that physics should be coordinate independent (e.g. diffeomorphism invariance
holds), the metric can be written as

ds® = dudv = x*(1, 0)dudd. (5.20)

Note that there are no da? and di? terms appearing in the equation above, thus u and v
only depend on one of the coordinates 4 or . Choosing u = u(@) and v = v(?) gives the
exact form of these functions by considering

du(T) B du(a) da(r)

= ) 5.21
dr du dr ( )
Using partial differentiation and
d di
u(r) = —au(t) and () =1, (5.22)
dr dr
yields
duli
1;(;) = —au, (5.23)
and thus i
u=Ce . (5.24)
Similarly i
v = De. (5.25)
Then the integration constants C' and D from dﬁﬁﬁgcome
1=x*(a=7,0="1)
du dv 2 —art aTt
= T o = —a"CDe e (5.26)
= —a’CD.
Hence 1 )
u=——e %, v=—e?, (5.27)
a a
The line element in the accelerated frame can now be written as
ds? = "~V dadp = 2" [(de°)? — (de")?] . (5.28)
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fig:Rindler

'

Figure 5: Minkowski spacetime in Rindler coordinates.

This is the metric on Rindler spacetime. Note that by expressing the inertial Minkowski
coordinates (¢, ) in terms of the Rindler coordinates (£2,&!) one obtains

1 1

t=5(utv)= ~¢%" sinh (a&?),
a

2 - 0 (5.29)

x = 5(—u +v) = —e% cosh (a"),
a

where the Rindlgr C:%%Q'irelgtes have ranges —oo < &9, &1 < o0.

From figure 5 one can see that a Rindler observer, moving on a trajectory with &' =
const, never crosses the Killing horizons located at £° = 400 AsC%r%eesdulst atclggiobserver is
confined to the right Rindler wedge. Referring back to Sect. @;ﬁmgm—nt_g@ surfaces
are Cauchy surfaces, i.e. Rindler spacetime is globally hyperbolic. It is this property that
will allow the introduction of equal-time commutators needed to quantize the scalar fields
in the following sections.

5.1.1 Massles scalar field

The current task at hand is to quantize a scalar field in Rindler/Minkowski spacetime.
To do this we will need to define which modes register as positive/negative frequency
modes in both the inertial as well as the accelerated frame. An inertial observer would
define positive/negative modes with respect to the Minkowski time coordinate ¢, while
an accelerated observer would use the time coordinate 7 = &Y. As the line elements are
related by a conformal transformation, we will see that a mode registering as a positive
frequency mode for an inertial observer registers in the accelerated frame as a superposition
of positive and negative frequency modes.
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In the case of a massless scalar field in 1 + 1-dimensions the action is given by

1
55 | Eav=a b0 330

where d?z = dtdr. As the inertial and accelerated frame are conformally related the
Lagrangian as well as the action are left invariant under this particular change of coordinate
system. That is

dtdz~/=gg"? = de’de'\/~g'g'*"
= dgdg’ (x*v=g) (x%9"") = de"de’ v=gg°°.

- ion2d
Rewriting @%}@ms of (u,v) and (@, ) yields
S = 2/dudv@u¢>8v¢ = 2/dﬂd68g¢8@¢, (5.32)

9 . +action2d . smetriclightcone
where the factor of 4 = 2° with respect to arises from the inverse of . As we

are dealing with a massless scalar field without any form of interaction, the equations of

motion become 8a% = 0 and thus

(5.31)

0uOpd =0 and 03030 = 0. (5.33) ’eq:unruh?deqm

The solutions to these equation are straightforward to compute and we write them as
B(u,v) ox e W 4T and o1, D) ox e M 4 o7, (5.34)

Here, the modes ¢ o e ™% and ¢ o< e ™ describe right moving, positive frequency
modes with respect to t and 7. Likewise, the left moving parts of the solutions is given by
¢ o< e and ¢ ox e, Where, Q € [0, 00], in what follows can be interpreted as the
frequency corresponding to a specific mode in Rindler spacetime.

Now that the solutions to the equations of motion have been found, the field ¢ can be
written as an operator ¢. Suppressing the left moving part of the solutions, the fields have
the following mode expansion

(e—zwu&w + ezwudl})

1 o .
(e—zQubQ + ezQub}Z) )

Ooo (5.35) |eq:unruhphi
/ (2m)1/2 /20
0

The creation and annihilation operators satisfy the bosonic commutation relations where
[a,al, | = 0w —w), [babl] = s -0), (5.36)
are the only non-zero commutators. To find the number of particles an observer accelerating
with respect to Minkowski spacetime (Rindler observer) would observe in the Minkowski

vacuum, we need to let the number operator defined in Rindler spacetime work on the
Minkowski vacuum. That is

(N ) = (Ourl bybo [0ar) (5.37)
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where |057) denotes the Minkowski vacuum and |0g) the Rindler vacuum. The vacua are
defined such that A
ay [0pr) =0, ba |0g) = 0. (5.38)

To evaluate the number operator, the creation/annihilation operators lA)g) and bg need to be
expressed in terms of al, and ay- By doing so it will become apparent that the Minkowski
and Rindler observer do not share the same vacuum.

The relation between the creation/annihilation can be found through the use of Bo-
golyubov transformations of the form[f|

bo = 70dw [amaw - 5Qwajd} . (5.39)
0

:commboson
From the commutation relations @_ﬂﬁ)rmalization of the Bogolyubov coefficients
becomes

e}

[BQ, 6}2,} - / dw(agualy, — BawBiy,) = 6(Q — Q). (5.40)

) 7 94 o~ oy~
= pTwu / d (O{Q/we_lQ i Ba/wezQ u> . (5.41)
0

Multiplying through with e**¥ where Q > 0, and integrating over @ results in

1 . .
dﬂie—zwuizﬂu —
[z

é\g

oo
B dasy VRO Vo
d’LL/ = (OéQ/we Q' utiQu ﬁ;}/wezﬂ u:l:zQu)
0

T A , . A .
_ /dﬂ/ N (aﬂlwez(m—g i _ ge, (040 )u) (5.42)
—00 0

[y
0 \/ﬁ

(2T (£Q — Q) — B 2m0(£Q + Q)

Note that the integral over €’ runs from 0 to oo and thus, for one particular choice of €,
can only be non-zero for either ag, or 85, but not both. Choosing the +£2 solution one
finds

[e.o]

1
dﬂﬁe

—00

_ 1 Q r ~ —jwutiQu
agw—zﬂ\/w/due . (5.44)

6As the Rindler coordinates only cover the z > |t| quarter of Minkowski spacetime, this mapping is
surjective (onto) but not injective (one-to-one). That is, the inverse mapping is not defined.

2T

—iwu+iQu
= AOw,
v

(5.43)

which can be solved for agq,,
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Using that % = — and the logarithm is only defined between 0 and +o0, this integral

au
can be carried out analytically

Qe = / /du e wu ﬁln(au)
— 1 Q =81 iwu (545)
= 27r“ - /du(—au) a e

1 Q 0 w2 ( ZQ)
= oy ek (f) r(-2).
2ma a a

The computation of 35, follows a similar reasoning and yields

1 Q 0 /w\2 102
B = =5\ ¢ (3) F(‘a>' (5.46)

Note that aq, and Bq. satisfy the relation

(5.47)

2 2
laqw|” =€

The last step is to compute the number of particles detected by an accelerated observer,

using the formula (igg ?; e
(¥o) = [ dwbinsio

. -/ 1(Q_Qf
- VO g (1) p (1) [l ey (545)

472a2 a a w \a
_ VY o (L) p (Y /dwe;(sm’)ln(‘;).
47202 a a w

The integral above can be eagily solved by making a change of integration variables y =

In (%)
) S e (22)1 ()i

44a a

)

(5.49)
VQQU =« , i) Q
— e~ 3a () <_”> r (Z ) 5(Q— ),
2ma a a
selecting the Q' = Q then gives
~ Q Q ZQ 2
Nog)=—=e€ o |['| ——
< Q> ora” < a > °0)
Q ™
T2 TQQ i 01? a0y (0)
ma uts
. sinh (%) (5.50)
e a
= 0(0
2 sinh (TQ) ©

eq:alphabeta



Here it was used that I'(iz) = ZT'(1+44z) and [I'(1 +iz)|? = 2—~—. The divergent §(0)

sinh (7z)
term is a consequence of the infinite volume of space and can be divided out, yielding the

mean number-density

(R) = <NVQ> - (eQ’TT” - 1)_1 (5.51)

From the calculation above, it is apparent that the observed radiation spectrum follows

the Bose-Finstein distribution with temperature T = o-.

5.1.2 Massive scalar field

The procedure above can be applied to a massive scalar field as well. In this case the action
for an inertial observer becomes

1
St = 5 /dtd:c [(d’,t)z - (Qb,:t:)Q - m2¢2} (5.52)
and for an accelerated observer
1 1
Sr=3 /d50d51 (600)" = (000)" = € m2e?] . (5.53)

Note that due to the mass term the actions are no longer conformally related. The equation
of motion for the inertial observer becomes

(07 = 92 +m?) ¢(x,t) = 0 (5.54)

which has as solution .
o(x,t) o e~ P 2n (5.55)

where z# = (t, ), p* = (po,p1), Po = \/P? + m? and we only wrote the right-moving part
of the solution. Quantizing this solution yields

n dp1 1 N —iptx N iphz
¢(t7.’15) :/(27{)1/2\/% (apoe Pray +a;0€pu “) . (556)

For the accelerated observer we need to solve
(a% — O+ e2aflm2) $(€0, €Y =0, (5.57)

indler2dmetriCrispino:2007eb
where the factor 2%’ comes from the metric . Following [49] we can apply separation
of variables and write ¢(£9,€1) = f,, (€1)e™™ " with g a positive constant, such that the
equation above becomes

1
(_qg — O + e m2> far(€1) = 0. (5.58)
For ¢! — —oo the solutions f,,(£') will start to rapidly oscillate as e*ié" and for ¢ — +oo

they will approach zero. In the first case we can approximate fy, (&) for €8 — —oo as

1
1y
fqo(g )N m

with €(gp) a real constant. This leads to the normalization condition

(ei(qo£1+e(qo)) + e—i(qo£1+e(qo))) 7 (5.59)

[e.o]

/ deV £, (€M) i (61) = 8(a0 — - (5.60)

—00
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. :unruh2dmasseom X .
Together with 1'55;; the equafion above yields the solutions

2¢p sinh (T2
fqo(gl) — M[{m (%6“51), (5.61) ’eq:unruh2dmass

m2a

where Kiq (%eafl> is the modified Bessel function. Thus

2qo sinh atl) | —igoc®
#(¢°,€") = Oﬂa()qu (%e ¢ )e g’ (5.62)
Quantisation of ¢(£9,&Y) gives
) 1_00 dCIO 1 7 —igo&° T *20§
e 0/ )17 vz L™ Bl ). (563)

The next step is to write both (13(507 ¢!) and ngS(t, x) in terms of the lightcone coordinates.
Noting that the Bogoliubov coefficients are independent of the coordinates, one can choose
a convenient point in spacetime to perform the evaluation of the fields. To simplify the
integrals observe that on the future Killing horizon, where ¢ = x and [t/ > 0 one has
t:“T‘H’:%andthus

~ —r d 1 N —i(— v N i(— A
o(t, x) == /(27:;1/2% (apoe (=potp1)3 +a;06( p0+p1)2> . (5.64)

Also, for £ — —oo the modified Bessel function can be approximated such that

2qo sinh (m) m .
1
fin(€) = || =g K ()
N N
_ Jwosin () | (Be) ()
B m2a  2sinh (T) F(1+m> B F<1_m> (5.65)
a a
i90 . g
_ @ (32) * e (g) 0 e d
2asinh () | T(14+%)  T(1-%)

Leaving out the expression 53;0 to lighten the derivation, the expression for the field in
terms of Rindler coordinates becomes

m | L igo&t m % —igo&t
6.6 = [ Goia s ) e () T e e
’ 27) WW\/MT <1+@> r(1-w) "
i9g 0 L
i [@Tews @ e,
- . = , bao.
(4m) 2asinh (T22) | T (1 + Zqo) r (1 — %)
(5.66)
However, for £ — —oo we have —@ = —(£0 — ¢!) — —o0, and thus e %% — 0, leaving
igo
n qu ) (ﬂ) @ TS
0 ey = — 2a e "%, . 0.67
6.8 = - [ ETTESTI AR (567
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If we now follow the same 1R)rocedure as in the previous section (i.e. plug in the Bogolyubov
transformation , multiply through with exp (igo?) and integrate over 0) we find

&5 s emt s aive  (m)
_ P ilpotp1)gtiged — 90 2a I % /
S72py e / ;> {aqépod(qo %) = Bips(do + d0) -

(5.68)
Focusing on « first we find
h(Z2)r (1 - i) .
aq = aSlIl ( ) . a dU ei(p0+p1)%+iq0@
- ()~ Vi
a

iy/asinh (F2)I' (1 -

WO
(ﬂ) Zqo /\/47T3p0

2a

7 asmh(’rqo)r‘ (1_m)p(m> B ﬂfo
: @ a (ipo P1

‘0 ;PO—P1 v
—14+—=2 @ ¢

(5.69) ‘ eq:unruh2dmass

2a

where it was used again that

1qo 190 a Qo iqo T
rB—|)rii-—)=—r—r(1—-—|r'f1+—)=————, 5.70
<a> ( a> 1q0 ( a> ( + a) z'sinh(%o) ( )

and i€ = €2, m = \/(po + p1)(po — p1).
Likewise the solution for 8,,,, is found to be

™40 _ g

e 2 Potpr\
BQOPO = - < — > , (5.71)
\/47rap0 sinh (7%0) Po—n1

: bero
such that the number operator @E‘m}%ﬂes

<]\qu0> = /dplﬂpoqoﬁ;;oqé
. o 5.72
e 2q (90140 T~ 1/2 @675(%"10)1“(5831). ( )
4dma (smh (”qo) sinh (%)) Po

Similar to the massless case, this integral can be solved by making a change of variables
y=1 5 1n (m) such that dp; = pody and hence

Po—p1
. — 34 (@0+ap) i ,
<Nq0> — €z 1/2 /dye_a(qO_Q())y
4dma (smh (ﬂqo) sinh (ﬂ%))

_*(QO‘HJO)
€ 2a
= 6(q0 - Q6)7

2 (blnh (MO) sinh ( q0)>1/2
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taking ¢(, = qo the number density becomes

(i) = <A$O> = (e%% - 1)71, (5.74)

the Bose-Einstein distribution with temperature 5-. It can then be concluded that the

number-operator has the exact same form regardless of the mass of the scalar field.

5.2 341 dimensions

To make the step to (3+1) dimensions we first have to redefine the inertial and accelerated
frame. The Minkowski metric in 3+1 dimensions becomes

ds? = dt? — da? — dy?® — d2?, 5.75
Y

and the normalization conditions in 3+1 dimensions differ from 1)
sense that o and S now run from 0 to 3. Putting the accelerated trajectory in the ¢, z-plane

such that u*(7) = (1,0,0,0) and a®*(7) = (0,a,0,0) (thus th;ia}clggl)ggation is captured by

the x(7) coordinate) the metric in lightcone coordinates (5.6|) becomes
ds? = dudv + dy* + dz* = gopda®da”, (5.76)
where now
0 1/2 0 0
1/2 0 0 0
gos= |7 000 (5.77)
0 0 01

The trajectory in lightcone coordinates can then be written as (1) = (u(1),v(7),0,0)
1'5”:; through

and equations still hold. In 1 + 1-dimensions we moved on from
here to defining a comoving frame for the accelerated observer in terms of the coordinates
(€9,¢1). In the 3 + 1-dimensional case we have coordinates (£°, &1, €2, €3). However, as the
acceleration only affects the (¢, z)-plane, one can make the identification ¢2 = y, &3 = 2.
The observer still needs to be at rest for £ = y = 2z = 0 and the proper time along the
worldline should be equal to €Y. Furthermore, for the first two coordinates we can demand
the metric of the comoving frame to be proportional to the metric in the inertial frame.
Hence

ds? = x2(€%,¢") [(dg°)? — (de")?] — dy® — d=. (5.78)

Then we can follow the same procedure as before and define the lightcone coordinates
=& — ¢ and 0 = €0 4 ¢

ds® = x*(@, 0)dudv — dy* — dz>. (5.79)

5.2.1 Massless scalar field

. . -metricéd -unruhmetric2
The relation between the first twa components of the metrics (5.76)) and (p-79]) is the same

as in (1 + 1)-dimensions (j5. uf the metric is no longer conformally flat. As a result
the action is no longer conformally invariant. We find then

1

St = 2/ [(8:0)* — (020)* — (0y8)* — (0-9)*] dtdzdydz, (5.80)
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the action of the fields quantized with respect to the Minkowski time ¢, and

1 1
S =3 / [(900)? = (926)? = €' ((0,0)° + (9:0)%)| A€ dydz, (5:81)
the action of the fields quantized with respect to the proper time 7 = £°. The equations
of motion become

(02 —82-02)p=0 and (9% — 0% — €€ 02 )p =0, (5.82)

where ¥, = (y,z). For the modes in the inertial frame, the solution is given by

P(t, T) ox e WuThTL), (5.83)

Note that the equation of motion for 4-dimensional Rindler spacetime has the same form
as the massive 2-dimensional equation from the previous section. Writing the Rindler field
as

$<£07§17ji1>:: jbo@L(gl)egiﬁm§07Ql'fL)7 (5'84)
where ¢ = (g2, ¢3) the equation of motion becomes
1 —
(—ap — 03 + €S 71) faoq. (€') = 0. (5.85)

:mass2dKG
The derivation of the solution is equivalent to the derivation following (@Wﬁﬁ the

replacement m? = ¢ where the dispersion relation is such that ¢y = @+ (ﬁ Taking
advantage of this the fields can be readily obtained as

o0

. dpdq, 1 /- o -
¢(fo’fl’fﬂ:/ Lo (bqoqlfqoqle_z(qogo_qu"’“)+bT Joa ez(qoﬁo—‘li'fﬂ))’

(2m)* V240 o
—0o0
7 dpd
o pidp. 1 /. —i(pot—pL-T1) | st ilpot—pL-TL)
W’”‘/ a7 s (s T gl TR )
—o0

. . . . 2 Mboson . . . (5.86)
The creation and annihilation operators, @ﬁtl—sﬁy the 4-dimensional bosonic commu-
tation relations

~

gl | = 50— P02 FEL =) (b Blug, | = 000 —a)0%(@ — 1) (5.87)

Note that the exponentials depending on Z| are equal for both qg(fo, ¢L#1) and <2>(t, T, T ).
As a result these terms will drop out after multiplication by e "L %L or =L 71 followed
by integration over #; and ¢ or P .

The Bogoliubov coefficients can be read of from the massless 2-dimensional case and

yield ,
_iag
S €2 <p0 +p1 > 2
qopo — )
\/47raposinh (Zo) \Po—P1

_T490 _ a0
€ 2a Pot+pr) >
Baopo = — — .
\/47rap0 sinh (T2) Po —Pp1
The number operator in 4 dimensions becomes

<Nqoql> = /de/dﬁL‘ﬁqopo’Q- (5.89)
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Instead of plugging in the explicit coefficients, one can make use of the completeness relation
in 4 dimensions

/dPOdﬁL(O‘qopan{)po o 5qop05;6p0) = d(q0 — CJ(I))52(€TL ~q\), (5.90)
and the relation or
2 Ll 2
|agopol” = €= [Bgopol” 5 (5.91)
to obtain
- 270 -1 3, =
<Nq@> - (e . ) 5(0)83(0). (5.92)
Dividing out the volume as before yields the number density
(N ) -
04 7r
(R) = % - (ech’ - 1) : (5.93)

5.2.2 Massive scalar field

Similar to the previous section, most of our equations remain valid. The FEuler-Lagrange
equation now yields the massive Klein-Gordon equation in 3 4+ 1-dimensions

(0f — 02 — 02 +m?) ¢(t,2,@1) =0, (5.94)
for the inertial observer. The solution to this equation is given by
¢ oc e P (5.95)

where now p* = (po,p1,7L), 2" = (t,2,Z.) and pg = \/p +p1L +m? and Z,, p| are
defined as before. For the accelerated observer we use Rindler coordinates such that

(€0, €1, 7 1) has to satisfy
(820 _ 621 _ e?afl (ag‘L _ m2)> ¢(£0’§17£J—) —0. (596)
This equation can be solved equivalently to the massless case yielding
1 —
(—q% — Of + ¥ mﬁi) o(e°, €1, 71) =0, (5.97)

9 9 9 9 . i . . -unruh2dmasssol
where mg = g5 + ¢35 + m* can be seen as a shifted mass. The solution is given by i
we make the substitution m — my

2qo sinh (T2 My a6l
faods (69 = WK (Bret'), (5.99)

which gives for ¢

2qq sinh (XL m . Lo
qb(fo,f ,fj_) —_ qOWZG(a)Kqu (qua&) e-z(goéo_quL). (5_99)
. . . . :unruh2dmassalpha
Making the substitution m — mg in W
mdo _ %40
= € 2a (Po + P1> 2a
qopo — )
\/47raposinh (Z) \Po—P1
a0 g (5.100)
e 2 Po+pr) %
Baopo = — i — Do — p1 )
\/47rap0 sinh (T)
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where it was used again that mq = /@5 +m? = \/qg —¢ = \/(qo —q1)(qo+ q1). The
number density can then be obtained as

Noog. ) _
(R) = <i°/“ - (ﬂﬂ -1) h (5.101)
From the calculations performed above, it is clear that the number density is indepen-
dent of the mass of the field and the dimensions of spacetime (for d > 2). The Unruh
effect turns out to be a purely geometric effect. It arises for a generic Lore tz—icr:l}{%g%l}t
matter theory simply because of the properties of the Rindler frame (see Sect.rﬁme

details).

Consider a generic Lorentz invariant Green’s function Gu(z,2') = Gu(x - g/) fop.
an interacting theory in Minkowski space. When evaluated on the worldline @—OT
uniformly accelerated observer, it will be a function of the Rindler coordinates (Z ,7) and
(&', ,7'). Since the theory is Lorentz invariant, Gy can only depend on (z — 2/)?. Using
the relation

(t—t)2 —(z—2)2=a"? [(sinh aT — sinh at’)? — (cosh ar — cosh a7')2]

o (5.102)

=2a"“ (cosh(aAT) — 1),
with A7 = 7—7/, the Rindler Green’s function has a 7 dependence of the form G g(cosh aAT).
Focusing for simplicity on 7/ = 0, a Wick rotation ¢ = itg will induce, through t =
a~'sinhar, a corresponding Wick rotation in Rindler time, 7 = irg. But this then
means that a general Rindler two-point function will be periodic in Rindler time, since
Gr(coshat) — GE,%E) (cosarp) = GSRE) (cos(atp + 2m)). We thus see that the periodicity
B = 2m/a implies a temperature T' = a/27.

As a consequence of this property, possible corrections to the Unruh effect arising
from quantum gravity models, will not propagate through to the number density. In the
following section, a framework based on the emission rate will be developed, exactly with
the intention to capture signatures originating from quantum gravity.

6 Rates from correlators

t.2
Birrell:1982ix,Unruh:1983ms,Hawki;

The rest of this work will follow the detector approach to the Unruh effect \1[365, 60, 610 145].
The advantage of this approach is that it considers observable quantities, namely emission
and absorption rates of the accelerated detector. The response of the accelerated detector
then indicates that it is immersed in a thermal bath of particles. This framework is ideally
suited for studying corrections to the Unruh effect by using effective two-point correlation

u {(1)0518 1Bricorp(?rati.ng qu’fmtum. gravity eff‘ects. We first égg'ewc tt_}he formalism following
45| before applying it to dimensional flows in Sects. [7] B[ an

6.1 Particle detectors and two-point functions

The simplest model of a particle detector is a quantum mechanical system with two internal
energy states |Ey) and |E1), with energies Eo > Ej. The detector moves along a worldline
x(7) parameterized by the detector’s proper time 7 and interacts with a scalar field ®(x)
by absorbing or emitting its quanta. The coupling of ® to the detector is modeled by a
monopole moment operator m(7) acting on the internal detector eigenstates through the

Lagrangian
Ly = g m(r)a(a(r)). (6.1



We will consider in the following the two cases of a detector moving inertially in
Minkowski space, and one movi %l:%rlllguﬁil uniformly accelerated trajectory, which de-
fines the Rindler space (see Sect.%.—b—eﬁs denote the Minkowski vacuum by |0,/), the
Rindler vacuum by |0r), and the one-particle state of the field ® with spatial momentum
k by |l_5> There Fﬁ {Q}rg&giossible processes giving a non-zero rate. Following the nomen-
clature used in [45] we can also give them a thermodynamic interpretation, since it will
turn out that Rindler correlators are thermal. First, the inertial detector can be in the
excited state with energy F5. This is a spontaneous emission process and corresponds to
the transition |E5)|0p/) — |E1)|k) for an observer comoving with the detector. Second,
the accelerating detector can be in the excited state with energy FEs. This is an induced
emission process and instead corresponds to the transition |Es)|[0g) — |E1)|k) for an
inertial observer in Minkowski space (or equivalently |E5)|0n) — |E1)|k) for an acceler-
ating one). Finally, an accelerating detector in the ground state E = FEj corresponds to
absorption, or the transition |E;)|0xs) — |E2)|k). Notice that the term absorption here is
meant purely as an analogy with two state systems, since the one-particle state ]E> still
appears as a final state.

The transition probability can be expressed in terms of the two-point function of the
field. To first order in time-dependent perturbation theory, the amplitude for the detector-
field interaction takes the form

A(k) =ig<Ef\M(0)|Ei>/dT€i(EfEi)T@\‘I)(x(T))!Om : (6.2)

The transition probability is the square of the amplitude, integrated over all possible final
states

Py = [ EHAG. (6.3)

For Ef = FEy and E; = E5 this gives the total, spontaneous plus induced, emission proba-
bility.

The field ® can be expanded in its normal mode basis, according to the choice of
vacuum. If we define the annihilation operators in Minkowski space as az|0y7) = 0, and
those in Rindler space (we work implicitly in the right wedge) as bz|0r) = 0, then the field
has the expansions:

P() = / &k (ugag + uzal) = / P (v, b, + 00 Ve ) (6.4)

We used the notation k, = (ky, k-), these coordinates are left untouched by the Rindler
coordinate transformation. Here the mode functions in the Minkowski basis are

U #e—i(wt—l_ﬂ‘f) ’ (65)
2(27)3w

o

where w = Vk2 + m2, whereas in the Rindler basis irt_h gggr%g_getgzs (1,£,%1) they are
given in terms of a modified Bessel function K, (z) as\%zfg '

. 1.2 2
Smh(w/a)]l/zK-/ LRSI PR (6.6)

v o= e’ |e )
wk [ 472q a

The sum over all possible one-particle states needed to obtain the transition probabilities
leads to a sum over modes ) _» UE(l’l)uz(lL‘z) Upon using the completeness of states this
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gives rise to the two-point function for the Minkowski vacuum. Defining C = g?|(E¢|m/(0)|E;)|?,

one finds
Py = c/w%/ dﬁ/ dry ¢ Bs =BT =) (E1® (2(71))|007) (007 | D (2(72)) | k)
e / dn / iy BB =m2) (015 (5 (7)) B (2 (71)) 01} (6.7)

Performing the integrati n Y§y2%llloghe final states first, the expression for the transition
probabilities then becomes RKZIS '

Py = CF(AE), (6.8)

where F'(AFE) is the so-called response function
F(AE) = / in / dry =i Er=EIATGL (AT — i) . (6.9)

Here AT = 71 — 79 (from now on the limit e — 07 is understood). For the massive case, the
response function is essentially given by the Fourier transform of the Wightman two-point
function G (AT — ie) evaluated on the detector’s trajectory.

In the following we will be interested in the emission case, with E; = Fy and Ef = E
and AF = FEy — F is taken positive by definition. For the case of the detector undergoing
constant acceleration the total transition probability %} contains contributions from
spontaneous and induced emission. Subtracting the spontaneous emission probability one
arrives at the following formula for the induced emission response function

oo
Fi(AFE) = / dridry € 2EAT (G (AT — i) — Gr(AT —i€)] . (6.10)
—0o0
Here Gy is the vacuum (Wightman) two-point function for an observer on the accelerated
trajectory in the Minkowski vacuum,

Gu (z,2") = (Op| @ () @ () |Onr) (6.11)
and G is the vacuum two-point function of an accelerated observer in the Rindler vacuum,
Gr (z,2") = (Op| @ (z) @ (2) |OR) - (6.12)

Practically, it is convenient to work with the induced transition rate per unit time given
by

Pisy = g (Eflm(0)|E;)* Fi(AE) (6.13)
with oo
Fi(AE) = / AAT e AEAT (G (AT —i€) — Gr(AT —i€)] . (6.14)

This equation is the relation between physical rates and two-point functions that we will
use in the following. In order to ease our notation we will set A7 =7 and AE = F from
now on.

The Wight%a% t;%ngtion for a massive scalar field with mass m in Minkowski space

entering into is given by

— . d3ﬁ d 0~ iD-T—1
Goa) = =i [ b GGty (6.15)

e 2T
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where )
G(p*)

1
VR m VR m?)
The contour 74 encircles the first order pole located at p° = \/p? +m?2. Carrying out the

Fourier in eﬁrrae]l{h(fggé)ls}%tive—frequency Wightman function in Minkowski space is given by
(see, e.g., '

= (6.16)

K (im\/(t ¥ —ie)? — (7 — g:ﬂ)2>
Culaa) =~ e (6.17)

’ massiveWightme

iveWightman
Here K is the modified Bessel function of the second kind. In the massless E}imit si%ligi .
Birrel Il ix,Agullo:2010iq

reduces to the Wightman function of a massless scalar field in position space [35]145]

1

N — [
Gl ) = = g oy PG

(6.18)

The Wightman function in Rindler space is just the same evaluated on the worldline
of the uniformly accelerated detector|

-1 1

t=a " sinh(ar), x=a " cosh(ar), y=0, z2=0. (6.19)
For a thermal system, the induced emission probability coincides with the absorption
probability. We can then turn to the proof that the Minkowski vacuum corresponds to a
thermal state when probed by an accelerated detector.

6.2 Emergence of thermality

ct:unruh

As mentioned in Sect. @e_fWWuh effect arises from the geometry of Rindler spacetime.
However, there is a subtlety in the Wick rotation ¢t = itg when the Wightman function
Gr(coshat) — Ggf) (cosatg) = G%E) (cos(atg + 27)). Due to the different domains of
analyticity of G4 and G_ in the complex T-plane, one actually identifies Gg(7g) = G4 (iTg)
for =27 < 75 < 0 and Gg(7g) = G_(iTg) for 0 < 7p < 27. This is responsible for the
change of sign of 7 in the KMS condition.

Undoing the Wick rotation we obtain the KMS condition in the form (with obvious
change of notation)

GRr(T) = Gr(—1 —1iB). (6.20)

This can be out iln_ 189%8}%1161' equivalent form, which is more natural when dealing with de-
tector rates RI(;S’ . Since the rate is a Fourier transform of the Wightman function, assuming

that Gg(7) is analytic in the strip —f < Im7 < 0, we have

. +m .
F(E) = / dre " FTGR(T — ie)

+oo A oo
= / dre BT+ 29) G (7 — i + ie)
_ -
= ¢ (B29E / dre'PTGRr(T — ie). (6.21)

7 1 o . ct:unruh
Note that from here one £* = 0 and £~ = 7 with respect to Sect.
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Here in the second line we made use of the analyticity assumption to push down the contour
in the complex 7-plane by i( — 2¢), and in the third line we changed variable of integration
to —7. Taking e to zero, the KMS condition becomes

F(E)=e¢PER(-E). (6.22)

This relation can also be derived directly in the free massive case from the parity properties
of the integrands appearing in the ratesﬂ A general gggflof the KMS condition for an
interacting field theory in any dimension was given in FB?F

The Unruh temperature is thus only determined by the Euclidean periodicity, and is
protected against corrections as long as the Lorentz invariance of Gy is preserved. In
particular, if one computes the average number density (n) in Rindler space from thermal
considerations alone, one can obtain the usual Planckia; d%s‘rﬁlgbution with temperature
T = a/27. As a simple illustration of this fact, in Sect. %ﬁwill derive the Planckian
thermal spectrum for a massive scalar field, showing as a byproduct that the temperature
is independent of the mass.

6.3 Detector response for massive scalars

The direct computation of the induced emission rate proves to be rather nontrivial. Here
we will instead opt for a shortcut, based on the KMS condition.

With reference to the nomenclature previously introduced, let us call F4 the absorption
rate and Fp the emission rate. This last one is the sum of spontaneous and induced
emis iont,‘EE = Fs + F 7. From the cjlerivation of the formulas for the detector rates in
Sectﬁ,ﬁe immediately finds that F4(—FE) = Fg(F). This is ensured by the fact that
the one-particle state \E) always appears as a final state, and thus the Wightman function
has the same frequency for both processes. The difference just amounts to the sign
of the Fourier exponential term. Using the KMS condition %, this gives

FA(E) = e PPE,(—E) = e PPER(E) = e PP[F1(E) + F5(E)]. (6.23)

If the induced emission and absorption rates coincide

FA(E) = F1(E) (6.24)
it follows that .
Fi(E) = E@ (6.25)

Thus one only needs to compute the spontaneous rate to obtain that for induced emission.
Condition can be explicitly proven for a free massive scalar field. Tt is indeed
found in this case [63] tha

. +oo .
F(E) = / dre  ETGRr(T — ie)

_ 27r/d2k1 o,z [ OCEIN(E/a) + 0(-E)(1 + N(IEVa))] . (6:26)
where )
NG) = g (6.27)

8We thank J. Louko for pointing this out to us.
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. . 1 . . . . t * 21
The different terms in @have a direct interpretation in the language of Sect. 6.1} The

first term corresponds to the absorption case, while the second is the sum of the sponta-
neous and induced emission. Indeed, as a check one can compute directly the spontaneous
emission rate by considering an accelerated detector in the Rindler vacuum (which is there
fore at rest), with £ = 0 and Z; = 0. An explicit calculation of this term following @[5
(see (3.11) in that reference) gives

2
) \/ k2 +m2 ;
Fs(E) = 2n / Pk dw Ky = sinh(rw/a) s, _ gy (6.28)

a 4d7ta

from hat and old.

Based on then, suffices to compute the spontaneous emission rate. Rather
than attempting to solve la%! analytically, an approximation using the response function
will prove to effectively capture the high energy behavior of the spontaneous emission

ind 1
which, usin 1@ recisely re%,roduec(?s the spontaneous term in @ It is then manifest
1

10:2010i

‘e11:1982ix
We then consider a detector at rest in_the Minkowski vacuum, in general dimension d [35!

The simplest way is to start from and substitute the explicit form of the two- pomt
function:
o0 o : % 1 y (3~
F(AE) ~ dr dro ezAEAT gt iw(t(m)—t' (12))+ik-(Z(m1)—Z'(12)) ) (629)
oo oo (2m)? 2w
Inverting the 7 and k integrations we find
. di=1k 1 oo ST
Fs(E) =~ dre (VW +m2=E)r
s(E) / (27T)d*1 2Vk2 + m?2
T 2 2\ 952
= — -m O(E —m). 6.30
F( 1)(2W)d 2 ( ) ( ) ( )

Exploiting now relation @,—fhe induced rate function per unit time of the accelerated
detector in d = 4 becomes

1
FN—\/EQ—m29E m) (6.31)
1
inal
Plotting the numerical integration of @ and the approximation @%& function of
the energy, E, one can clearly see that for large energies the approximation agrees with

the numerical result. For the case of a massless scalar field, the spont neous f}gg&igion rate
can be calculated analytically and the approximation becomes exact ?6‘3 '

response

Fdotfinal

The rate function constitutes the main result of this subsectjon. a}ggﬁ t}]&e Hm‘& .
: X ullo:2010i
0, it agrees with the derivation for the massless case given in TBS 45]. The structure

of @Eﬁfen motivates the definition of a profile function F(E) via

. 1 1

For a massless and massive scalar field obeying the Klein-Gordon equation one then has
Fmassless gy — g Fmassive(py — \/E2 _m20(E —m). (6.33)

For general dimension the profile function is

d—1
T2 d—3

F(E) = N (B2 —m?) 2 9(E —m). (6.34)
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Figure 6: The profile functjon F(E) for a = 0.3 and m = 1. The blue, solid line depict, .
the numerical integrati while the red, dashed line s LOWS the approximation (%L
For large values of F, is well approximated by .

As we will show in the subsequent section, it is this profile function that actually carries
information about quantum gravity corrections to the Unruh rateﬂ

As stressed before, the Planckian thermal factor is independent of the details of the
field considered. The fact that the mass dependence enters through the prefactor tells us
that the signatures of the fields involved will only be present in physical rates, and not in
number densities (n).

7 Master formulas for modified detector rates

In the presence of a dimensional flow, @(pz) entering into @gﬁ%ires a non-trivial
momentum dependence It is useful to distinguish the two cases where [G(p?)] ™! is a
polynomial in p? or given by a more general function with a finite number (ty ic%d]:"y1 Tne t; 39
of zeros in the complex p°-plane. These two cases will be discussed in Sects. %dm '
respectively.

7.1 Detector rates from the Ostrogradski decomposition
-sect.31

We start by considering the case in which [é (pQ)} ' = P,(p?) is an inhomogeneous poly-
nomial of order n. This covers the class of theories with a general quadratic effective
Lagrangian £ = %dﬂ?n(—82) ¢ where P, is a local function of the flat space d’Alembertian
operator that admits a Taylor expansion around zero momentum. This comprises all local
theories in which higher order corrections come in definite powers of momenta. E hg lisIPit'
ing case n — oo can also be considered. In this case the profile function F(FE), , can
be constructed from the Ostrogradski decomposition for a higher-derivative field theory.
The polynomial P,(z) has n roots, p;,i = 1,...,n in the complex z-plane. It can then

be factorized according to
(=) 7

1
°In the subsequent sections, the approximation sign for the profile function will be omitted.
10As noted before, this does not necessarily entail the breaking of Lorentz symmetry since G(p*) may
still be a Lorentz invariant function depending on the square of the momentum four-vector only.

Pn(z) =c |

n
1=
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where ¢ is a normalization constant. In order to connect to the case of a massive scalar
field, the momentum space propagator is decomposed according to

ool A
[Pa(2)] ™" = ; ey (7.2)

1
wh re the coefficients A; are functions of the roots p;. Assuming that z # p,, @Land
@Lcan be multiplied to obtain the condition

S A4 J[G—m)=1. (73)

1=1 JFi

This condition must h%Itd for any value z # ;. Since the left-hand-side is a polynomial in
z of order n — 1, gives rise to n equations determining the coefficients A;. Defining
the vector Z = 1i§ﬁ...,zn_1] and introducing the coefficient matrix C via C;; Z; =

[T (2 = 1y) entails
ZAi Cij = 01j, (7.4)
i=1

where d;; is the Kronecker symbol. This equation can be solved for A; if C is invertible,
i.e. detC # 0. The general condition for the two-point function to be factorizable then is
Wi # j,1 # J, i.e., all roots of the polynomial have order one.

Assuming that these conditions are met, the solution for the A; is given by the first
row of the inverse matrix C, A; = (C‘l)li. The explicit solution for the A; is then given
by

-1
A= TJwi =) | (7.5)
J#
For. fgture reference, it is convenient to give the coefficients A; entering the decomposition
or the cases n = 2 and n = 3 explicitly. For n = 2,

1 1
Aj=—, Ag=—— (7.6)
M1 — H2 H2 — M1
while for n = 3 one has
1 1 1
A = , Ao = , Ag = (1)
(11 — p2)(p1 — p3) (H2 — pa)(p2 — p3) (13 — pa) (13 — p2)

At thi tage the following remark is in order. On mathematical grounds the decom-
position works as long as all roots of the polynomial haye oEder one. Qn physical

grounds there are extra conditions on the roots: comparing and establishes
that pu; = m? should be identified with the square of the particle mass. This implies that
roots located at the negative real axis correspond to modes with a negative mass squared.
In this case the isolated poles at pg = £+1/p? + p; are turned into branch cuts and we will
not consider this tachyonic case in the following. Moreover, complex roots always come in
pairs w, . This implies that the positive frequency Wightman function 0 tr?@gis ungf; 121,%
modes which grow exponentially in the far past and far future (also see ST{]la—fng
discussion of this feature). On this basis, we restricfiﬁ(igiselves to polynomials P,(p?) whose
roots are located at the positiv E%agaxis, see Fig. [1]

Since the rate function ‘ﬁfﬁnem in the Wightman func ign, it is rather straight-
forward to obtain the detector response function for the case . Following the steps of
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Figure 7: Integration contours or2the positive frequency Wightman function based on the
Ostrogradski decomposition of the function G(p?).

t.23 £
Sect. [6.3[ we can compute the profile fupctiqn F (E) determining the rate @iSubsti—
tuting the explicit form of the A; from he result reads

n

FE) =3 [ TT0w— ) ¢ ~ i O(E — /i) (7.8)
i=1 \j#i

The rate function is completely determined by the roots of the polynomial P,(p?). Tt
receives new contributions once new channels become available, i.e., if the energy gap E
crosses a threshold p; where new degrees of freedom enter. Ordering the roots p; by their
magnitude, i.e., u; > p; for j > i, one sees that the sector with p;, j > i does not affect
the “low-energy” part of the rate function with E < p;: the energy gap E of the detector is
not large enough t slorb a particle of mass ,/pj, j > i. This, in particular, implies that
if the polynomial (i? § arises from an effective field theory description of a system, there
are no corrections to the massless Unruh effect below the first thresholg 42> Q, provided
that the polynomial P, is properly normalized. The master formula hen constitutes
the main result of this section.

7.2 Detector rates from the Kéillen-Lehmann representation

Notably, not all two-point functions proposed in the context of quantum gravity fall in the
class where the Ostrogradski-type decomposition is admissible. A prototypical example is
provided by Causal Set Theory. Here é( ) interpolates between the standard propagator
for a massive scalar field for momenta p? below the discretization scale atmﬂC a no%gfgmra Belenchia:2015a
expression without giving rise to additional poles in the complex p’-plane \118 19
these cases it is still possible to obtain an explicit formula for the profile function F(E)
based on the Kéllen-Lehmann representation of the two-point function.
The Kéllen-Lehmann representation of the positive frequency Wightman function in
position space is given by

Go(t,7) = /O dm? p(m?) GO (1, & m) . (7.9)

Here p(m?) denotea a s%.%%wia]hgcigggity and G(f) (t, &;m) is the positive-frequency Wi tmap

function given in . Substituting the Kéllen-Lehmann representation into an
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exchanging the order of integration, the comput tiogcl gg the rate function reduces to the
one, fog ithe massive scalar field carried out in Sect.a@_'ﬂe resulting profile function F(E),
, 18 given by

F(B) = /O i pm?) Bt (7.10)

Hence the profile function obtained from the Killen-Lehmann representation is given by
the superposition of contributions with mass m weighted by the spectral density p(m?).
Only excitations with mass below the energy gap of the detector contribute to the rate
function, which is consistent with the expectation that contributions with m? dar]?fe will
not excite the detector. The result from the Ostrogradski decomposition, @mhen
be understood as a special case where p(m?) is given by a sum of §-distributions located
at m? = Wi
Dimensional reduction in general seems to be at odd with unitarity. On a manifold
with spectral dimension ds, the asymptotic form of the two-point function in momentum
space is
G(p®) ~ (p*)*%. (7.11)

Expressing a general two-point function through the Kéillen-Lehmann representation as
in the previous section, we see that, as soon as ds < d, its fall-off properties can only
be consistent with the p~2 behavior of the spectral representation if we relax the positiv-
ity properties of the spectral function p(m?). This automatically entails the presence of
negative-normed states and thus a departure from unitarity.

This signals the fact that these types of higher derivative toy models shouldn’t be taken
too fundamentally. It is likely that dimensional reduction, together with (local) Lorentz
invariance, signals the presence of a fundamentally nonlocal the . At ﬁ;}fgggcsrcales. The
issue of unitarity for nonlocal theories then is more subtle, see BZI]]—f(mm detailed
discussion. The higher-derivative toy models can be considered as approximations to a full
nonlocal theory, in which unitarity is preserved.

8 Scaling dimensions

The two-point function G (p?) serves as the essential input for computing both the spectral
dimension D seen by a scalar field propagating on the spacetime as well as the rate
function of the Unruh detector. Thus, it is conceivable that there is a relation between the
rate function of the Unruh detector and the spectral dimension. This section introduces
the definitions needed to make this relation precise.

In the computation of the spectral dimension, p? = (p°)? — 52 is analytically continued
to Euclidean signature p%4 = (p%)? + p2 > 0. Subsequently, one introduces a fiducial
diffusion process based on a (modified) diffusion equation

0y K(z,2";0) = —F(—0%) K(x,2;0), (8.1)

subject to the boundary condition K (z,2’,0) = §%(z—2'). Here o is the (external) diffusion
time, K(z,2';0) is the diffusion kernel and F(—9%) is determined by the equations of

motion of the p Q%%g;ating field. In terms of Fourier-modes F(p%) = (G(—p%))~'. The

solution of Eq. (8.1]) 1S readily obtained in Fourier-space and reads
K(z,2';0) = / d°p @) o= F (1) (8.2)
b ) (2ﬂ')d * -
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The return probability after diffusion time o is given by

d
P(o) = / (;lﬂl;d e F0R) | (8.3)

and the scale-dependent spectral dimension Dg(o) is defined as

_2dln P(o)

Ds(0) = dlno

(8.4)
This definition generalizes the standard definition of the spectral dimension ds; which is
recovered by evoking the limit of infinitesimal random walks ¢ — 0. This framework
yields the spectral dimension associated with the two-point function G(p?) commonly used
to assess the dimensionality of spacetime igoguantum gravity.

. . . . 1 2 2+77

Analyzing 'the S(?ahn.g bghawor n (. ‘28{1161a}1‘;inds that for the case where F(p3;) o pi,

the spectral dimension is given by [[7]

2d
Dy=—. 8.5
2+ (8:5)

The case of a massless scalar field with é(pQ) = p~2 corresponds to 7 = 0 and the spectral

dimension agrees with the topological dimension d of the spacetime. In case of a multiscale
geometry the scaling law F' (pZE) x p?n is obeyed for a certain interval of momenta only.
In this case the spectral dimension will depend on the diffusion time o. If the scaling
regime extends over a sufficiently large order of magnitudes, D4(o) will be approximately
constant in this regime, realizing a plateau structure. Typically, such plateaus where Dg(0)
is approximately const t%{,‘ﬁffgﬁneded by short transition regions where D changes
rather rapidly, see Fig. %Foran—explicit example illustrating this type of crossover.

In a similar spirit, one gan define the effective dimension of spacetime seen by the
Unruh detector. Eq. indicates that the profile function for a massless scalar field
obeying the Klein-Gordon equation in a d-dimensional spacetime scales as

F(E) oc B973. (8.6)

This motivates defining the effective dimension seen by the Unruh rate, the Unruh dimen-

sion Dy, according to
dIn F(E)
Dy(E)= ———+
v(E) =ik

For a massless scalar field with C~¥(p2) = p~2 or a massive scalar field and energy E? > m?,
Dy is independent of E and coincides with the classical dimension d of the underlying
spacetime. Paralleling the discussion of the spectral dimension, this feature changes, how-
ever, if G(p?) has a non-trivial momentum profile. The examples presented in Sect.
indicate that Dy may agree with the spectral dimension in certain cases, but in general
the two are different quantities. The Unruh dimension may yield a characterization of
quantum spacetimes which is accessible by experiment, at least in principle. Note that
the dimensions are only well-defined i e&lglgesm& irg:ﬁ;ions of sufficient extent and have to be
taken with caution during crossoverslﬁ .

A direct comparison between Dy and Dy requires an identification of E and the diffu-
sion time o. The matching of dimensions in the classical case suggests using

+3. (8.7)

2

o=FE"", (8.8)

where 2n is the mass-dimension of G(p?). We will use this relation in the sequel.
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The emission/absorption rates can be related to the density of states of the system
interacting with the detector. The density of states as a function of momentum can be
defined as p(k) = dQ(k)/dk, where Q(k) is the volume of momentum space. Since the
spectral dimension dy is the Hausdorff dimension of momentum space, we can assume that
Q will scale as Q(k) ~ ck%. Then we see that p(k) o< k%1, and a smaller value of d,
entails a suppression of the density of states. This in turn will imply a suppression of
the various transition rates. Due to the relation between this density of states and the
transition rates, we expect a relation between the spectral and Unruh dimensions, D, and
Dy. This relation will indeed be made more precise in the next sections.

9 Unruh rates and dimensional flows

We illustrate th | formalism devised in Sect. [y first studyi t'Etth
€ 1llustrate e genera Oormalism devised 1n SHecCt. y st stu ylng corrections t04;1 e

Unruh rate arising within quantum gravity inspired multiscale models in Sect. e

connection tgc) aguﬁx— leitn E&leories, spectral actions, and Causal Set Theory will be made
in Sects. “and [9.4] Tespectively.

9.1 Dynamical dimensional reduction

In this subsection we investigate modifications of the Unruh rate arising from a particular
class of quantum-gravity inspired two-point functions G(p?) typically encountered when
discussing the flows of the spectral dimension.

Two-scale models

The simplest way to b%ain a system exhibiting dynamical dimensional reduction is based
on a polynomial, with n = 2, containing a single mass scale m:

1

Pa(p?) = ——5p* (p* —m?) . (9.1)

Here the normalization ¢ has been chosen such that the model gives rise to a canonically
normalized two-point function at low energy. The scaling of this ansatz is given by

2 2 2
P, pP<m
Pa(p®) o { (9.2)

pt, p>>m?,

. . 9 . ctraldimension _, . .
with the crossover occurring at m~*. Evaluating , the spectral dimension based on this
model interpolates between a classical regime with Dy = 4 for long diffusion times and

Dy = 2 for short diffusion times.

2 tz1
The Ostrogradski decomposition @L of @a?zlelds
1

- 1
GO =5 e (9-3)

p
detrat
The master formula (i?éﬂ ] egllifaesethe following expression for the profile function

F(B)= B~ VB~ m2 (B~ m). (9.4

Expanding F for small and large E leads to the scaling behavior

E<m: F(E)=FE = Dy =4,
9.5) |2scaleasym
E>m: F(E) = 35 + O(E7?%) < Dy=2. (8:5)
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m jgure 8: Profile function F(E), (i@iai form=1 (left panel). The asymptotics given in

are Hustrated by the dashed lines. The right panel shows the dlmenswns Dy (dashed
line) and Dy (solid line) resulting from the two-point function

This expansion implies that a kinetic term including higher-derivative contributions leads
to detector rates which are suppressed at high energies. In particular, whereas for a
massless (free or interacting) scalar field with a standard kinetic term the prefactor of the
rate grows linearly with energy, the profile function vanishes proportional to E~! at high
energies. This also entails that the Unruh dimension Dy interpolates between the classical
dimension Dy = 4 for small energy and Dy = 2 for F > m.

.dimflowl
For m = 1 this profile function is shown in the left panel % iéf Despite the inclusion

of modes with a wrong sign kinetic term (poltergeists) in e Unruh rate is OSIEIV L owl
definite, indicating that the model is stable in this respect. The right panel of Fig. %!S%’W
the spectral dimension (dashed line) and effective dimension seen by the Unruh effect ( Ohflesettin
line) where the construction of the spectral dimension is based on the identification @—g
Both dimensions interpolate between D = 4 for E < m and D = 2 for E > m. Dy
displays a discontinuity at E? = m? which can be tracked back to the derivative of the
square-root becoming singular at this point.

Multi-scale models

At this stage it is instructive to consider a multiscale model which may exhibit more than
two scaling regions. The simplest model of this form is build from a third order polynomial
P3(p?) with vanishing mass m; = 0
1
Ps(p*) = —— p* (" —m3) (p* = m3),  m3>ms. (9.6)
2 M3
Provided that ms > mo this ansatz exhibits three scaling regimes

2

P, p2 < m% ) Ds=4
4 2 2 2
Ps(p?) x ¢ P my L p° << my, D, =2 (9.7)
p67 m§>>p27 D :%7
Jspectraldimension

where the spectral dimension has been determined by evaluatmg (3-9]-
Performing the Ostrogradski decomposition for Ps(p?) gives

~ 1 m# 1 m2 1
Gp')=5——5— + 2 : 98)
p> mi-—m3p2—m3 mi—m3p2-—m3
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Figure 9: Illustration of the Unruh effect in a n = 3 multiscale model with m; = 0,

mg = 0.1 and mg = 10. The resulting profile function F(E) is shown in the left panel
while Dy and Dy are displayed in the right panel. The horizontal gray lines indicate the
plateau values of the dimensions at 4,2,4/3 and 0. Notably, Dy and Dy exhibit different
asymptotics for £ > mg.

The resulting profile function then reads

2 2
ms my

Expanding F for small and large E leads to the scaling behavior
E<ms: ]:(E):E <~ Dy =4,

.10

& +O(E™) <« Dy=0.

E>>ms: F(E) = —

At this stage two remarks are in order. In contrast to the two-scale model, the n = 3
case exhibits regions where the profile f nc't&(i)lrnlﬂ}; 3?) actually becomes negative. This is
illustrated in the example shown in Fig. %Ag‘rwm where limg_, o F(F) — 0 from below
then indicates that this feature holds for all values my and mgs. Thus the Unruh rate
exhibits an instability for a generic n = 3 model. Lo dimflow?
Furthermore, the spectral and Unruh dimensions shown in the right panel of Fig. ﬁ]ls%wowi
that, contrary to the two-scale model, the asymptotics for Dy and Dg do not agree for
E > m3. Ila tg)se%ggggal case, this may be understood as follows. Considering the general
expression or m; = 0, Dy is given by the classical dimension as long as F < ma.
Each additional term in the sum creates a new scaling region where Dy decreases by two
comp redcjccgaitdsi&?el;?syiigﬁls value. In contrast the pattern for the spectral dimension follows
from (B.5]). Combining these relations allows to express the effective dimension seen by the
Unruh effect in terms of the spectral dimension

8

Dy =6- - (9.11)

Thus, while there is a clear relation between Dy and Dy, the effective dimensions seen by a
random walk and the Unruh effect generically do not coincide within the class of multiscale
models studied here.

Logarithmic correlation functions

An interesting model which does not fall into the class of multiscale models where the
Ostrogradski decomposition can be applied arises from

G = . (9.12)
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This is the typical fall-off behavior of correlation functions in quantum gravity models
which lead to Dy = 2 in the ultraviolet. In this case the positive-frequency Wightman

function is . .
d3k dk0 ik-£—ik"t
G, (Z,t) = 2/355 o - — (9.13)
(2m)* o 2m (RO + [K|)2 (KO — [k])2

Picking up the double pole at k0 = |E|, and setting & = 0 before carrying out the angular
momentum integral, one obtains
- > dk 2 it k(i
G (Z,t) = —477/0 @n ) k [ + 2} e k(t=i) — 1) 4 I, (9.14)

(2K)% ~ (2k)
The second integral is simply

1
I, = 37 (9.15)
The first integral can be written as a regularized Laplace transform and gives
: 1
Y . ~ N—F
L = E1_1)r(r)1+ g1_1>1%1+ I'(€) (e +1it) = ) (logt + const) . (9.16)

Thus the resulting positive frequency Wightman function has a logarithmic dependence on
the proper distance. Restoring Lorentz invariance, we get

G (3 8) = # [log <\/(t i) — (T f/)2) + const] . (9.17)

2
Substituting the Wightman function into the formula for the Unruh rate, @T—eﬁ?lds
. 1 & - 2sinh(%
F(E) / drett™ {log (sm(2)> + const] . (9.18)

~ Q2
8% J_ at

The constant terms give rise to terms proportio, eiﬂ to 0(E), indicating an infrared insta-
bility of the setup. Since the propagator @ﬁn‘ls thought of describing the asymptotic
behavior of the system at high energies we will ignore these terms in the following. Since
the argument of the logarithm is an even function in 7 the integral can be expressed as a
(regularized) Fourier cosine transform

/0 " dre e log <Sm2(”€)> cos(wz) . (6.19)

written in terms of the new variables © = a7/2 and w = 2F/a. This integral can now be
written as I = Iy — Is, where

F<E) - el—l}é]Jr 2am?

1 d [ th(%2
L= lim —5— / drxe” " (sinh(x))” cos(wx) = —L(z),
e—0t 2am* da Jq 030 2w (9.20)
I = lim L4 [~ dre”“z® cos(wx) =-=,
e—0t 2am?da J 00 2w

Combining the two contributions, the resulting detector rate is given by

. 1 1
FE)=— —5+ 9.21
( ) 47TE 1 o 627;]:',‘ Y ( )
implying that the profile function resulting from a p~* propagator is given by
1
E)=— = Dy =2. 9.22
F(E) =55 U (9.22)
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Figure 10: Profile function F(E) for a 5-dimensional Kaluza-Klein theory @Wﬁh
R = 1/(2m) (blue, solid line). For guidance the lines F(E) = E (black, dashed line) and
F(E) = E?/4 (red line, right diagram) have been included. For E < R~! the profile
function is linear in E, while for £ > R~ it increases proportional to E2.

This is precisely the asymptotic behavior @a_fh(%r% in the two-scale model in the limit
E > m. Thus the direct computation of the detector rate in the p*-case confirms the drop
of the Unruh rate at high energies and constitutes an independent verification of the rate
function found in the two-scale case.

9.2 Kaluza-Klein theories

A scenario where the dimensional reduction occurs when going towards the infrared is
provided by Kaluza-Klein theoriesm In this case the (classical) spacetime is assumed
to possess four non-compact and a number of compact spatial dimensions whose typical
extension is given by the compactification scale R. At length scales [ > R the effect of the
extra-dimensions is invisible and physics is effectively four-dimensional. We demonstrate
that also in this situation the dimensional reduction entails a suppression in the Unruh
effect. In the case of Kaluza-Klein theories where the number of effective dimensions
increases when going to high energies this implies that the detector rates for energies
above the inverse compactification scale are actually enhanced as compared to the four-
dimensional rate. ) ¢ KKtheories

For the scalar field ﬁ given in Sect. @Ma—lﬂein mode ¢, has a two-point
function of a scalar field with mass m,, = n/R. Taking into account the entire tower of
modes, the resulting function G (p?) is given by

. o0 TL2 -1
G(ﬁ):ﬁ ; (2—R2> . (9.23)

detrat
Applying the master formula @Eﬁlﬁs case then yields the profile function

1 oo

— 2 _ 2 —

F(E) =5 <E+2?;\/E (n/R)? 0(E n/R)) : (9.24)
i gKKprofil

The shape of this profile function is illustrated in Fig. il(if Th contrast to the case of a

dynamical dimensional reduction at high energies, all Kaluza-Klein modes contribute to

the profile function with the same sign. This leads to an effective enhancement of the

11 . . . . . . hiou:2016exd
A related discussion of the Unruh detector in Kaluza-Klein theories appeared in Ref. GBJITdTmW

final stage of preparing the manuscript.
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profile function for £ > R~!. Explicitly,

E<1/R: F(E)x E <~ Dy=4,

(9.25)
E>1/R: F(E)x E? <+ Dy=5.

. file .
The profile function @ﬁﬁerpola‘ces between these two behaviors. Thus also the pres-
ence of extra dimensions leaves its imprint on the Unruh rate, adapting the scaling law of
the profile function once the energy E exceeds the inverse compactification scale.

9.3 Spectral actions

discussed above are spectral actions. As explained in Sect. e basic 1dea is that the ac-
tion describing the dynamics of the theory is generated by the trace of a suitable differential
operator, typically the Dirac operator D

Sy = Tr[x(D?*/A?%)]. (9.26)

Here we focus on the case where D? is given in terms of the Laplace operator on flat
Euclidean space supplemented by an endomorphism including a real scalar field <Z53E

D’=— (VL4 E), E=—iy'ysd,¢—¢. (9.27)

The definition of the model is then completed by specifying the function x.

A framework which naturally gives rise to two-point functg‘%ré%:g Q%Ztl axyith the properties

Nonlocal analytic models

t1
We first discuss the case where x(z) = e~%. In this case the spectral action (%coincides
with the heat-trace of the Japiacs sl ARATatar Wos Ao et 158 Welosh e M HEBAL 1ochum: 20117, Cote

ical object, see e.g., [66] 67] 63, 69, [7U, [/I[. In particular the two-point function of the

model is given by
o _ A

Sex = (4W)z/d4x[¢Fo(—3%/A2)¢}- 9.28)

The structfre fl‘llnggi%i} fla:b is obtained from the heat-kernel result for the endomorphism F

and reads 2u§ .

Fo(z)=2zh(z) — 4, (9.29)
with

1
h(z)—/ da e 1=z, (9.30)
0

The function h(z) is an entire analytic function which is nowhere vanishing in the complex
plane. The momentum—dege%%%t two-point function for this model is then obtained by

analytically continuing o Lorentzian signature

~ 872 1

G(p®) = TAZ Fy(—p2/A%) (9.31) |ssi

where p? is the Lorentzian momentum four-vector.

2 : : R T i . .. Alkofer:2014kuamwkov:2013kfa
The spectral dimension arising in this situation has recently been studied in [24], also see 23] for a

related discussion.

o1



A careful study of the two-point function @D reveals several remarkable features.
First, the model naturally gives rise to a Higgs mechanism for ¢. The propagator exhibits
a pole at p? ~ —3.41A? indicating that the expansion of ¢ around vanishing field value
corresponds to expanding at an unstable point in the potential. Restoring the ¢* term[-r_a-]
leads to a scalar potential

V(p) = —puHod? + A* + ..., (9.32)
with u% = 2A% Neglecting the higher-order terms, the potential gives a non-vanishing
vacuum expectation value (¢) = + 5}’— Expanding the field around this minimum leads

to a potential for the fluctuation field ¢
V(o) =2p4 6%+ ..., (9.33)

Thus, when expanded around the minimum of the scalar potential, the structure function
entering into )%D should be given by

Fy(z)=22zh(z)+8. (9.34)

Fp(2) has a single real root located at p? ~ 2.56A2. This root corresponds to a positive
mass pole in . In addition there are complex roots located, e.g., at

p? = —(1.32 £ 21.98:) A%, (9.35)

These roots can be traced back to the mass-term contribution in Fy or Fy and are absent
if one considers the zh(z) part only. The presence of complex roots signals that the
Wightman function contains modes which increase exponentially for large times. These
modes introduce an instability in the Unruh effect, which we will not investigate further.
It would be very interesting to see if there are functions y which give rise to a nonlocal
theory avoiding this instability.

Ostrogradski-type models

By making a suitable choice for the function y one can also generate spectral actions which
are local in the sense that the (inverse) two-point function is given by a finite polynomial
in p? E The simplest choice, leading to a two-scale model, uses

xX(z)=(a+2)0(1—2), a>0. (9.36)

Replacing the polynomial multiplying the stepfunction by a polynomial of order n leads
to a multiscale model whose inverse propagator is given by a polynomial of order n in p?.

The spectral action for these cases can be found explicitly by combining the early-time
expansion of the heat-kernel in s = A2

zg Z am (p

m=0 (9.37)
1

S<8+25pE (SpE)2+...>

odello:2008vh
with standard Mellin transform techniques [73

1 d*
& = o [ [Zﬂ Q1] am <p%>m] 0. (9.38)

anSuijlekom:2015iaa

—_

13For a discussion of the Higgs mechanism in almost-commutative geom Ly see %?ﬁ 11.3.2 of ![5 ol.
14This is closely related to the zeta-function spectral action proposed in [[72].
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Figure 11: Profile function @Ei% for a = 3.2.

The moments @, depend on the function y and, for n € Z are given by

Qnlx] = ﬁ JoSdz 2"t x(2), n>0, 939
Qo] = (=) x™(0), n>0.
For the ansatz @{6’]) the moments are
Qid=a+s, Qhl=a Qikl=-1 Qo=Qs=...=0. (9.40)

2
Converti .toslégrentzian signature, the inverse two-point function based on the expansion

of FH7
1 1
2y _ 2 4
The two roots of the system are located at

p12 = 3aF V9a? — 24a — 12. (9.42)

Provided that 2(2 +1/7)/3 < a < (3 + v/15)/2, both roofs are on the positive real axis.
Thus the model falls into the class discussed in Sect. ' profile function is readily
obtained by applying the Ostrogradski decomposition to

2
F(E) = 154_”“1 (\/EZ — 1 0(E — /i) — VE? — 2 0(E — \/,TQ)> . (9.43)
The behavior of this profile function is illustrated in Fig. ﬁm

For E? < py the profile function vanishes, indicating that the energy gap is too small
for the detector to interact with the two massive fields. For 7.77 < E? < 12.77 the profile
corresponds to the standard Unruh rate for a field with mass m? = 7.77. Once E? crosses
the threshold at 12.77 the profile function decreases and falls of asymptotically as E~!
for high energies. Thus spectral actions may give rise to similar profile functions as the
multiscale models discussed at the beginning of this section.

9.4 Causal Set inspired theories

A second framework which naturally gives rise to corrections to the Unruh effect are the
nonlocal two-point functions emerging in the context of Causal Set Theory. In this case
the two-point functions extrapolate between a classical massless or massive propagator at
energy scales well below the discretization scal?A glrégbgigli§%%ezzv1;,’é£%rpggceirtian naturally
associated with the Causal Set at high energies |31, 7/4]. In this section we will derive the
resulting Unruh signature arising from this setting as well as from Causal Set inspired toy

models.
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Rate suppression in the full theory

The explicit form of the two point function read{™|

i[5 Ki(iVa2%) _
G+($2)=—% o dggma (9.44)

where £ is a momentum and

3

bn oo _

g€ =a+4ntt ) Ich /0 s eI (g5)ds (9.45)
n=0 "

The parameters are determined based on the analytic properties of the two-point function
i - _4 - 4 — _36 — 64 _32 - i

and given by a = NG by = Vé’\fél;b 1\4@21)0214—”{, by = NG C = g;- The asymptotics
2 . . =

of g(¢%) has been determined in [31I]

1
lim —— = — — +---,
2550 g(£2) £2 :
(9.46) |asymptotics
I 2\@71 n
im = — cee
200 g(€?) ¢t

We thus see that at high energies the two-point function has a characteristic p~# behavior.
The profile function will then asymptotically match the result we already derived in Sect.
5.1, for the logarithmic case, displaying a 1/E fall off.

Using the two-point function as above, the equation for the detector rate gives

[T e (m(%ﬁésinh(;(f—z‘e»)_K1<<r—ie>f>), (0.47)

278 o 98 ) %sinh(%(T—ie)) (T —i€e)§

from which we arrive at the profile function
9 E /B2 — 52
F(E) = / dé§————. (9.48)
T Jo 9(€?)

In principle this relation gives the exact form of the profile function in Causal Set Theory.
Its evaluation ri_'e(gcliicrées the full form of g(¢2) and cannot be based on the asymptotic ex-
pansions (i@i%) alone. Performing the resulting integral numerically is beyond the scope of
the present work. Instead we will focus on a simplified model which allows for an analytic
treatment.

A consistent toy model

intcausal
The central properties of the two-point correlation function for Causal Sets ﬁﬁ% are
captured by the combination %f a maus_sg%sls5 R,%Ie at zero mass combined with a continuum

aravani
of states with density p(m?) [75]. The resulting positive frequency Wightman function

is then given by the sum of the massless one, denoted by GSS) and an integral over the

continuum of states

G (t,7) = GV (t, 7;m = 0) + / dm?p(m?) G (t, 5m) | (9.49)

0

15We set everywhere the sprinkling density p to one.
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Ezaggggnggé%,r@ém) denotes the Wightman function for a scalar of mass m. Inspired by
[75] it is conceivable that all relevant physics of the Causal Set construction is retained by

approximating the density of states by

N
p(m?) = e 3" by m?" . (9.50)
n=0

Here « is a parameter of order one, by is related to the nonlocality scale, and the remaining
bn’s are free parameters.

As a consistency requirement, the simplified model should recover the massless theory

i thesinfrared limit. This is ensured by requiring that the continuum contribution to

@%&nisbes in the where the geodesic distance Z = (¢ — 2 — (F — 7')? goes to
9

infinity. Substituting ( ) into is condition entails
lim bn / dme M mate 272 = ). (9.51)
Z—0 =0 0 \/Z

Applying the expansion of Kj(x) for large argument the resulting integral reduces to a
representation of a I-function and falls off as Z~3/* independent of n. From this, it
follows that imposing a classical asymptotic behavior in the infrared does not constrain

the parame.ters Lot ralF - . .
Evaluating (7.10] for @ywlds the profile function for this model

E2
0

N
FE)=E+Y b, / dm? e~ m" /B2 —m? (9.52)
n=0

At this stage, it is instructive to study the case N = 1 in detail. Setting oo = 1, the two
integrals can be carried out explicitly, giving rise to imaginary error functions

E?
IoE/ dre ™ EQ—:L‘:E—@e_WErﬁ(E),
0

I = / dre ™ xE2 —x=3E— Ye P (34 2E?) Exfi(E) .
0
Expanding the integrals at &/ = 0 one has
L~2FE*+..., L~4E +.... (9.54)

Thus the low-energy behavior is governed by the massless contribution, independently of
the values by and b;. Looking at the asymptotics of the integrals for E?2 > 1, one
has

I~ F—— 4 L~E- g (9.55)

0 oF ey 1~ 1E e .
Hence, for generic values by, b1 the asymptotic scaling for £ < 1 and £ > 1 is identical. In
these cases there is no change in the Unruh dimension. For the special value by = —(bp+1),

however, the leading term in the high-energy expansion cancels and the asymptotics of the

profile function reads
. bo+3

F(E) 1B

(9.56)
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Figure 12: Profile function F(F) and Unruh dimension Dy arising from d%ith by =1,

by =—2and b, =0,n > 2.

Thus, for this case the model matches the Unruh rate X.ggltlgéﬂl for Causal Set Theory.
Setting by = 1 the full profile function is shown in Fig. %Emthe profile function and
the Unruh dimension undergo a transition when the energy scale meets the discretization
scale controlled by setting by = 1.

10 Conclusions and outlook

Due to the geometric nature of the Unruh effect, the radiation temperature (and thus
the number operator) is protected against corrections originating from extra dimensions
and mass terms. In order to capture possible signatures induced by quantum gravity, we
investigated the relation between quantum gravity inspired models exhibiting dynamical
dimensional flows and the Unruh effect. Since both the detector approach to the Unruh
effect and dimensional flows originate from a non-trivial momentum dependence of the two-
point correlation functions there is a natural connection between the two. Explicitly, we
focused on two-point functions arising within the context of phenomenologically motivated
models for dynamical dimensional reduction, multiscale models, Kaluza-Klein theories,
spectral actions, and Causal Set Theory. From the viewpoint of two-point functions, these
models come in two distinguished classes. In the first case the inverse two-point function
has a polynomial expansion in momentum space. This case is realized within dynamical
dimensional reduction, multiscale models, Kaluza-Klein theories, and certain classes of
spectral actions. It is also realized in theories that break Lorentz invariance, which we
did not touch uponE] The models forming the second class possess two-point functions
which are quasi-local in the sense that their inverse consists of a first order polynomial
multiplying a function which is analytic in the complex plane. This setup is realized by
Causal Set Theory. Our study of these models exhibits two universal features. First,
despite incorporating quantum (gravity) corrections in the two-point function, the Unruh
radiation remains thermal in all cases. Moreover, the low-energy spectrum is robust with
respect to corrections of the two-point functions at high energies, i.e., the response of an
Unruh detector is not modified below the characteristic scale where the dimensional flow
sets in.

The two-point functions occurring in the first class of models can be reduced to a sum

ndition
16 Alternativ ¥ QBESY 11d26?§‘izc§athat the limit in 1515 ) is formally of the same type as considered in
Appendix A of |31, and %gus one can apply the same manipulations to conclude that the limit gives zero
irrespective of n.

17 . . . . inaldi:2008gt ,Majhi:2013koa,Gutti:2010nv,Agull.
There is a vast literature on this class of models. See for instance |43} 76 77}, [7S
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of (massive) second order propagators through an Ostrogradski-type decomposition. In
this case we derive a master formula which expresses the response function of the Unruh
detector as a function of the mass poles. Rather than explicitly calculating the response
functions, we used the KMS condition to relate the induced emission to the spontaneous
emission, where the factor of proportionality is exactly the Planckian distribution. We
then calculated the spontaneous emission by approximating the profile function. In the
case of a massive scalar field the approximation and numerical result agree for small values
of -, while in the high energy limit the two coincide.

As a generic feature, one finds that dynamical dimensional reduction leads to a suppres-
sion of the Unruh effect at high energies while the opening up of extra dimensions leads to
an enhancement above the compactification scale. In particular, models where the spectral
dimension asy totes to D; — 2 at high energies also exhibit a universal falloff in the
rate function %f the Unruh effect F(F) o« 1/E. We proposed here to quantify this
non-trivial asymptotic behavior of the profile function through a new parameter, which
we called the Unruh di n%lo[ﬁmgg Stllr})% system. This is defined through the scaling of the
profile function, as in %fmtly from other proposed parameters characterizing
the high energy behavior induced by quantum gravity effects, this one is directly related
to a physical quantity that is accessible experimentally, at leagt inlprinciple. Moreover, it
is directly related to the spectral dimension via the relation . The specific examples
studied in this paper already indicate that different quantum gravity models come with a
very distinguished signature in terms of their Unruh detector response function. This may
serve as an interesting starting point towards identifying universal features among differ-
ent approaches to quantum gravity. This requires the computation of positive-frequency
Wightman functions within different quantum gravity programs.

Obviously, it would be quite natural to appiy. fhe founaise developed ifsthis BB cp, Reuer: 201214.»
the gravitational Asymptotic Safe‘Fy program 795773, 80, B 1L 82 B3] l‘n th.IS ngg?ﬁ(otﬂa%%g,(:hristiansen:2015
momentum dependence of two-point functions has recently been studied in [84] 85l [80].
It is clear that an investigation of the Unruh effect should be based on the renormal-
ized propagators where all quantum (gravity) fluctuations have been integrated out. The
corresponding expression for the positive-frequency Wightman function is currently not
available. Nevertheless, much progress has been made in recent years towards the con-
gtstion gfrenermalized tvsppointofungtions tofing guanium UCtatons I8 ACNeua s chnorn: 20166
o™l SIS Y 80l oL 90].On this basis, we expect that 1t 1s teasible to compute the ingerprints
of Asymptotic Safety in the Unruh effect. Thi g{llgmrx{ngilﬁgggeer%levant f%olénd%r

onanno

L. . at ve,B ep .70%&%1%%%%780%%6 Reuter:2006rg,Reu
fate of black holes within Asymptotic Safety [91] 92 93] 04, 95 96l 97, 98], 99| [L00] TDTT’—L

based on first principles.

Another natural extension of our work is the application to Hawking radiation. Here it
was ar 1}!%(} Eh%oggg low-energy Hawking spectrum is actually insensitive to Planck scale
effects [TO2Z[. e situation is quite similar to the one encountered in the present work,
where the Unruh spectrum at energy scales below the scale where the dimensional flow sets
in is actually unaltered. At the same time there are indications that quantum gravity effects
could stop the gﬁck:gg}?ugvaporation process and leave a cold remnant. In particular, it
was argued in [I03] that the black hole evaporation could come to an end once the spectral

'lgllle.%iﬁnwdrops to Ds = 3. This would be relevant for the information problem as well

. Applying the techniques based on two-point correlation functions used in the present

work may actually allow one to develop these ideas based on a first-principle calculation.
We plan to come back to this point in the near-future.

Finally, we have not analyzed the class of models displaying a minimal length. These
models are important for quantum gravity phenomenology, since this effect is believed to
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. . aray:1994en . . . .
appear quite generically ﬁ: 05]. It would be interesting to see if a connection to our results

can be made.
From an experimental point of view, multiple proposals have been made to acquire
experimental evidence for the Unruh effect. Most of these proposals focus on the detection

of the noik a‘%f;f{f%z%%l h other phenomenologi aélc%z)v(:igg%gg%ble effects (e.g. the Berry
phase [39], the use of the Sokulov-Ternov effect [36]). Practical issues naturally arise as a
result of the small imprints left by the Unruh effect. Corrections to the Unruh effect as a

result of processes taking place near the Planck-scale will then be even harder to detect
with the technology currently at our disposal.
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