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1 Introduction

The purpose of this research report is to answer the following question: How does the

type of liquid within a hollow cylindrical cylinder shell affect the time it takes to roll down an

inclined plane? The objective is to determine a quantitative relationship between the type of

viscous liquid in a cylindrical shell and the subsequent time it takes to reach the bottom of the

ramp as well as establish a greater conceptual understanding between the two variables of

kinematic viscosity, which is a “measure of a fluid’s internal resistance to flow under

gravitational forces,” (Troyer, n.d.) and time in the context of the physical system illustrated in

Figure 1.

Figure 1. Illustration of the forces acting on the center of mass of the liquid-filled hollow

cylindrical shell

Understanding the theoretical relationship between kinematic viscosity and time is done in two

steps. First, a numerical relationship between the variables will be established in order to be

tested experimentally for validity. Second, as there is no recorded solution to the problem posed
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in this essay, the experimental results will be compared to the theoretical values in order to check

for their reliability and accuracy. Furthermore, to establish the numerical relationship between

kinematic viscosity and time and to answer the research question requires delving into so–called

‘convoluted’ integrals and setting dimensionless parameters to determine an analytical solution

through establishing viscosity boundary (e.g. liquid exhibiting properties pertaining to being

inviscid or having infinite viscosity) conditions in order to model the behavior of liquids that do

not fall into either category.

To reduce external factor influence, the research scope has been limited. Particularly, the

material of the can as well as the can itself is held constant throughout the experimental process.

The reason for this is to omit the potential effects that different materials, specifically with

different thermal conductivities, have on a fluid’s flow rate in the cylindrical shell when it is set

into motion.

2 Theoretical Background

Viscosity boundary conditions

The first step to deriving an analytical solution to the proposed investigation first requires the

assumption that the moment of inertia and mass of the can be omitted as it does not apply to

fluids. The reasoning behind this assumption lies in the fact that a fluid is capable of shearing

due to the shear stress caused between fluid particles that causes it to move due to fluid viscosity.

Therefore, the fluid cannot undergo a fully-rigid rotation along the inclined plane, and thus, the

moment of inertia and mass of the can can be discarded in further calculations which would only

be relevant in scenarios of fully-rigid body rotation. In the fluid mechanics textbook Transport

Phenomena authored by Edwin n. Lightfoot, Robert Byron Bird, and Warren E. Stewart released
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in 1960, they solve the problem of viscous flow near a wall suddenly set in motion, and

particularly, of a semi-infinite body of liquid with constant density and viscosity which is

bounded by a horizontal surface. Presumably, the fluid and solid (e.g. cylindrical shell) are at rest

at , and then are set into motion in the horizontal direction with a velocity . Their findings𝑡 = 0 𝑉

show that, at a time , the shear stress exerted by a fluid can be determined by:𝑡

σ = µ 𝑉
δ(𝑡)

where is the fluid viscosity and is the boundary layer thickness in effect, which is theµ δ

distance from a solid’s surface to the point where the fluid velocity reaches 99% of the free

stream velocity according to Munson, Okiishi, Huebsch, and Rothmayer, and can be quantized

through:

δ = π𝑣𝑡

where is the kinematic viscosity which is further given by:𝑣

𝑣 = µ
ρ

where represents the density of the fluid. Therefore, as Lightfoot, Bird, and Stewart concluded,ρ

the torque, , imposed on fluid on the inside surface of the can can be determined through theτ

following expression:

(1)τ = 2π𝑅2𝐿σ = 2π𝑅2𝐿 µ𝑉
π𝑣𝑡

= 2ρ𝑅2𝐿 π𝑣 𝑉
𝑡

where is the inner radius of the can. However, the solution the physical system posed requires𝑅

this formula to be adjusted to account for the fact that the torque imposed by the shearing fluid

on the inside surface of the can is a linear function of the tangential inside surface velocity can.

Equation 1 does not take into account the aspect of time and thus it can be updated to

acknowledge that the rotation of the can is variable in time through linear superposition that is
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achieved through a convoluted integration method. This method was specifically chosen as this

type of integration utilizes a “dummy” variable (e.g. ) in order to solve a differential equation.ξ

(2)τ(𝑡) = 2ρ𝑅2𝐿 π𝑣 ·
0

𝑡

∫ 𝑉'(ξ)
𝑡−ξ

𝑑ξ

where = and is a time variable of integration. Furthermore, it should be noted that:𝑉' 𝑑𝑉
𝑑ξ ξ

(3)𝑉'(𝑥𝑖) = 𝑅α(ξ)

where is the angular acceleration of the can. Therefore, through the combination of theseα

equations, it is revealed that:

(4)τ(𝑡) = 2ρ𝑅3𝐿 π𝑣 ·
0

𝑡

∫ α(ξ)
𝑡−ξ

𝑑ξ

Moving on, it is also necessary to take into account the moment balance of the can in order to

derive the formula for frictional force through balancing the torque in the physical system.

According to Engineering Mechanics: Statics and Dynamics written by James L. Meriam and L.

G. Kraige and released in 2013, by considering the balance of forces and torques on a can rolling

down an inclined plane, they determined that:

(5)𝐹𝑅
0
− τ = 𝐼

𝑐
α

where is the outside radius of the can. Further substitution as well as solving for the frictional𝑅
0

force reveals that:

(6)𝐼
𝑐
= 𝑀

𝑐

𝑅
0
2+𝑅2

2

where represents the mass of the can. Furthermore, if we substitute prior equations we find𝑀
𝑐

that:
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(7)𝐹 = 2ρ 𝑅3

𝑅
0
𝐿 π𝑣 ·

0

𝑡

∫ α(ξ)
𝑡−ξ

𝑑ξ + 𝑀
𝑐

𝑅
0
2+𝑅2

2 α

Moreover, this formula can be further simplified when understanding that the angular

acceleration is kinematically related to the acceleration of the center of mass of the can “ ”α 𝑎

through:

(8)α = 𝑎
𝑅
0

Therefore, substituting Eq. 8 into Eq. 7 and simplifying further yields:

2ρ 𝑅3

𝑅
0
2 𝐿 π𝑣 ·

0

𝑡

∫ α(ξ)
𝑡−ξ

𝑑ξ + 𝑀
𝑐

1+(𝑅/𝑅
0
)

2 𝑎(𝑡)

(9)= 𝑀
𝐿
κ2 2 π𝑣

π𝑅( )
0

𝑡

∫ α(ξ)
𝑡−ξ

𝑑ξ + 𝑀
𝑐
(1+κ2)

2 𝑎(𝑡)

where is the mass of the liquid in the can and . However, it has been stated and𝑀
𝐿

κ = 𝑅
𝑅
0

( )
explained that the variance in mass can be neglected. Similarly, as the inner and outer radii of the

can used in the experimental stage of this investigation are approximately equal, Eq. 9 can be

simplified as:

(10)𝑀
𝐿

2 π𝑣
π𝑅( )

0

𝑡

∫ α(ξ)
𝑡−ξ

𝑑ξ

Additionally, for the case where the outer boundary layer is thin and otherwise negligible in the

rotating fluid, Eq. 10 can be reduced further to yield:

(11)𝐹 = 4
π
𝑀

𝐿
𝑣𝑡
𝑅 𝑎

Therefore, it can be deduced that the force balance equation can be written as:
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𝑀
𝐿
𝑔𝑠𝑖𝑛α − 𝐹 = 𝑀

𝐿
𝑎

or

(12)𝑎(𝑡) = 𝑑𝑣
𝑑𝑡 = 𝑔𝑠𝑖𝑛α

1+ 4
π

𝑣𝑡
𝑅

≈ 𝑔𝑠𝑖𝑛α 1 − 4
π

𝑣𝑡
𝑅( )

Then, it is possible to take the integral of this function in order to get a velocity function:

(13)𝑣 = 𝑔𝑠𝑖𝑛α(1 − 8
3 π

𝑣𝑡
𝑅 )𝑡

Furthermore, integrating it once again will provide a function for the distance:

(14)𝐿 ≈ 𝑔𝑠𝑖𝑛α(1 − 32
15 π

𝑣𝑡
𝑅 ) 𝑡2

2

which to the same level of approximation shows that:

(15)𝐿(1 + 32
15 π

𝑣𝑡
𝑅 ) ≈ (𝑔𝑠𝑖𝑛α) 𝑡2

2

The first approximation to the solution to the physical system in terms of the time taken to reach

the bottom of the ramp for a completely inviscid solution is given by:

(16)𝑡 ≈ 𝑡
0
= 2𝐿

𝑔𝑠𝑖𝑛α

However, an arguably more accurate solution can be found through substituting this expression

for into the term in parenthesis and subsequently solving for :𝑡
0

𝑡

(17)𝑡 ≈ 𝑡
0

1 + 16
15

𝑣𝑡
0

π𝑅2

This equation thereby represents the behavior in the physical system described if and only if the

mass and the moment of inertia are treated as negligible as done in the investigation, and only in

the limit of . This function will act as the range of times with the viscosity16
15

𝑣𝑡
0

π𝑅2 << 1

boundary conditions of a fluid that is completely inviscid and one that has properties of infinite
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viscosity and will be cross–checked with the actual experimental results to ascertain its validity

and accuracy.

Dimensionless parameters

Asymptotic solution at long times
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