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1 Introduction

The purpose of this research report is to answer the following question: How does the

type of liquid within a hollow cylindrical shell affect the time it takes to roll down an inclined

plane? The objective is to determine a quantitative relationship between the type of viscous

liquid in a cylindrical shell and the subsequent time it takes to reach the bottom of the ramp as

well as establish a greater conceptual understanding between the variables of kinematic viscosity,

which is a “measure of a fluid’s internal resistance to flow under gravitational forces,” (Troyer,

n.d.) and time in the context of the physical system illustrated in Figure 1.

Figure 1. Illustration of the forces acting on the center of mass of the liquid-filled hollow

cylindrical shell.Note. Singh, J. (2020a, March 2). NAEST 2015 screening test solution: Cylinder

rolling down an inclined plane. NAEST 2015 Screening Test Solution | Cylinder Rolling Down an

Inclined Plane.
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Understanding the theoretical relationship between kinematic viscosity and time is done in two

steps. First, a mathematical relationship between the variables will be established in order to be

tested experimentally for validity. Second, as there is no recorded solution to the problem posed

in this essay, the experimental results will be compared to the theoretical values in order to check

for their reliability and accuracy. Furthermore, to establish the mathematical relationship

between kinematic viscosity and time and to answer the research question requires delving into

so–called ‘convoluted’ integrals and setting dimensionless parameters to determine an analytical

solution through establishing viscosity boundary (e.g. liquid exhibiting properties pertaining to

being inviscid or having infinite viscosity) conditions in order to model the behavior of liquids

that do not fall into either category.

To reduce external factor influence, the research scope has been limited. Particularly, the

material of the can as well as the can itself is held constant throughout the experimental process.

The reason for this is to omit the potential effects that different materials, specifically with

different thermal conductivities, have on a fluid’s flow rate in the cylindrical shell when it is set

into motion.

2 Theoretical Background

Viscosity boundary conditions

The first step to deriving an analytical solution to the proposed investigation first requires the

assumption that the moment of inertia and mass of the cylindrical can be omitted as it does not

apply to fluids. The reasoning behind this assumption lies in the fact that a fluid is capable of

shearing, which means that it is capable of flowing as well as changing shape (Princeton) due to

the shear stress caused between fluid particles that results it to move due to fluid viscosity.
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Therefore, the fluid cannot undergo a fully-rigid rotation along the inclined plane, and thus, the

moment of inertia and mass of the can can be discarded in further calculations which would only

be relevant in scenarios of fully-rigid body rotation. In the fluid mechanics textbook Transport

Phenomena authored by Edwin n. Lightfoot, Robert Byron Bird, and Warren E. Stewart released

in 1960, they solve the problem of viscous flow near a wall suddenly set in motion, and

particularly, of a semi-infinite body of liquid with constant density and viscosity which is

bounded by a horizontal surface of which a diagram is shown in Figure 2.

Figure 2. Visual representation of the problem regarding viscous flow of a fluid near a wall

suddenly set in motion. Note. Bird, R. B., Stewart, W. coautor, & Lightfoot, E. n. (1960).

Transport phenomena. J. Wiley.
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Presumably, the fluid and solid (e.g. cylindrical shell) are at rest at , and then are set into𝑡 < 0

motion at in the horizontal direction with a velocity . Their findings show that, at a time𝑡 = 0 𝑉

, the shear stress exerted by a fluid can be determined by:𝑡

σ = µ 𝑉
δ(𝑡)

where is the fluid viscosity and is the boundary layer thickness in effect, which is theµ δ

distance from a solid’s surface to the point where the fluid velocity reaches 99% of the free

stream velocity according to Munson, Okiishi, Huebsch, and Rothmayer, and can be quantified

through:

δ = π𝑣𝑡

where is the kinematic viscosity which is further given by:𝑣

𝑣 = µ
ρ

where represents the density of the fluid. Therefore, the torque, , imposed on fluid on theρ τ

inside surface of the can can be determined through the following expression:

(1)τ = 2π𝑅2𝐿σ = 2π𝑅2𝐿 µ𝑉
π𝑣𝑡

= 2ρ𝑅2𝐿 π𝑣 𝑉
𝑡

where is the inner radius of the can. However, the solution to the primary research question𝑅

requires this formula to be adjusted to account for the fact that the torque imposed by the

shearing fluid on the inside surface of the can is a linear function of the tangential inside surface

velocity can. Equation 1 does not take into account the aspect of time and thus it can be updated

to acknowledge that the rotation of the can is variable in time through linear superposition that is

achieved through a convolution integration method. This method was specifically chosen as this

type of integration utilizes a “dummy” variable (e.g. ) in order to solve a differential equationξ

(Wang).
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(2)τ(𝑡) = 2ρ𝑅2𝐿 π𝑣 ·
0

𝑡

∫ 𝑉'(ξ)
𝑡−ξ

𝑑ξ

where = and is a time variable of integration. Furthermore, it should be noted based on𝑉' 𝑑𝑉
𝑑ξ ξ

the fact that there exists a relationship between the tangential inside surface velocity and the

angular acceleration of the can such that:

(3)𝑉'(𝑥𝑖) = 𝑅α(ξ)

where is the angular acceleration of the can. Therefore, through the combination of theseα

equations, it is revealed that:

(4)τ(𝑡) = 2ρ𝑅3𝐿 π𝑣 ·
0

𝑡

∫ α(ξ)
𝑡−ξ

𝑑ξ

Moving on, it is also necessary to take into account the moment balance of the can in order to

derive the formula for frictional force through balancing the torque in the physical system.

According to Engineering Mechanics: Statics and Dynamics written by James L. Meriam and L.

G. Kraige and released in 2013, by considering the balance of forces and torques on a can rolling

down an inclined plane, they determined that:

(5)𝐹𝑅
0

− τ = 𝐼
𝑐
α

where is the outside radius of the can and is the moment of inertia of the object. Further𝑅
0

𝐼
𝑐

substitution as well as solving for the frictional force reveals that:

(6)𝐼
𝑐

= 𝑀
𝑐

𝑅
0

2+𝑅2

2

where represents the mass of the can. Furthermore, if we substitute prior equations we find𝑀
𝑐

that:
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(7)𝐹 = 2ρ 𝑅3

𝑅
0

𝐿 π𝑣 ·
0

𝑡

∫ α(ξ)
𝑡−ξ

𝑑ξ + 𝑀
𝑐

𝑅
0

2+𝑅2

2 α

Moreover, this formula can be further simplified when understanding that the angular

acceleration is kinematically related to the acceleration of the center of mass of the can “ ”α 𝑎

through:

(8)α = 𝑎
𝑅

0

Therefore, substituting Eq. 8 into Eq. 7 and simplifying further yields:

2ρ 𝑅3

𝑅
0

2 𝐿 π𝑣 ·
0

𝑡

∫ α(ξ)
𝑡−ξ

𝑑ξ + 𝑀
𝑐

1+(𝑅/𝑅
0
)

2 𝑎(𝑡)

(9)= 𝑀
𝐿
κ2 2 π𝑣

π𝑅( )
0

𝑡

∫ α(ξ)
𝑡−ξ

𝑑ξ + 𝑀
𝑐

(1+κ2)
2 𝑎(𝑡)

where is the mass of the liquid in the can and . However, it has been stated and𝑀
𝐿

κ = 𝑅
𝑅

0
( )

explained that the variance in mass can be neglected. Similarly, as the inner and outer radii of the

can used in the experimental stage of this investigation are approximately equal, Eq. 9 can be

simplified as:

(10)𝐹 = 𝑀
𝐿

2 π𝑣
π𝑅( )

0

𝑡

∫ α(ξ)
𝑡−ξ

𝑑ξ

Additionally, for the case where the outer boundary layer is thin and otherwise negligible in the

rotating fluid, Eq. 10 can be reduced further to yield:

(11)𝐹 = 4
π

𝑀
𝐿

𝑣𝑡
𝑅 𝑎

Therefore, it can be deduced that the force balance equation can be written as:
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𝑀
𝐿
𝑔𝑠𝑖𝑛α − 𝐹 = 𝑀

𝐿
𝑎

or

(12)𝑎(𝑡) = 𝑑𝑣
𝑑𝑡 = 𝑔𝑠𝑖𝑛α

1+ 4
π

𝑣𝑡
𝑅

≈ 𝑔𝑠𝑖𝑛α 1 − 4
π

𝑣𝑡
𝑅( )

Then, it is possible to take the integral of this function in order to get a velocity function:

(13)𝑣 = 𝑔𝑠𝑖𝑛α(1 − 8
3 π

𝑣𝑡
𝑅 )𝑡

Furthermore, integrating it once again will provide a function for the distance:

(14)𝐿 ≈ 𝑔𝑠𝑖𝑛α(1 − 32
15 π

𝑣𝑡
𝑅 ) 𝑡2

2

which to the same level of approximation shows that:

(15)𝐿(1 + 32
15 π

𝑣𝑡
𝑅 ) ≈ (𝑔𝑠𝑖𝑛α) 𝑡2

2

The first approximation to the solution to the physical system in terms of the time taken to reach

the bottom of the ramp for a completely inviscid solution is given by:

(16)𝑡 ≈ 𝑡
0

= 2𝐿
𝑔𝑠𝑖𝑛α

However, an arguably more accurate solution can be found through substituting this expression

for into the term in parenthesis and subsequently solving for :𝑡
0

𝑡

(17)𝑡 ≈ 𝑡
0
(1 + 16

15

𝑣𝑡
0

π𝑅2 )

This equation thereby represents the behavior in the physical system described if and only if the

mass and the moment of inertia are treated as negligible as done in the investigation, and only in

the limit of . This function will act as the range of times with the viscosity16
15

𝑣𝑡
0

π𝑅2 << 1

boundary conditions of a fluid that is completely inviscid and one that has properties of infinite
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viscosity and will be cross–checked with the actual experimental results to ascertain its validity

and accuracy.

Asymptotic solution at long times

As the can accelerates, the fluid inside the can exhibits a non-uniform angular velocity

distribution, with the angular velocity at the can surface exceeding that of the fluid in the interior.

This discrepancy in angular velocity generates a shear stress profile within the fluid, which in

turn influences the can's rotational motion. This situation bears a striking resemblance to the

transient heat conduction problem in a solid cylinder subjected to a constant heat flux at its

surface. In the heat transfer scenario, the temperature inside the cylinder initially lags behind the

surface temperature, leading to a radial temperature gradient and a corresponding radial heat flux

profile. Over time, the temperature at each radial location within the cylinder increases linearly

with time. However, this linear increase is accompanied by a time-independent radial

temperature profile that ensures a uniform rate of temperature rise at all radial locations. This

analogy between the fluid-filled can and the solid cylinder under transient heat conduction

highlights the role of transport phenomena in influencing the dynamics of rotating objects in

viscous fluids. The shear stress profile in the fluid, analogous to the radial temperature gradient

in the solid cylinder, plays a crucial role in dissipating energy and affecting the rotational motion

of the can.

Therefore, if we utilize this understanding, it is possible to determine the asymptotic solution at

long time intervals to the two principle dimensionless equations 18 and 19 which are derived in

Appendix A. From there, we are able to deduce that, at long times, the angular velocity profile

in the fluid approaches:

(20)ϖ = 2
3 𝑡 + 1

12 𝑟
2
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where , , and are dimensionless parameters, which allow us to be able to compare theϖ 𝑡 𝑟

relative physical effects of each term in an expression. The aforementioned dimensionless

parameters may be expressed as:

(21)ϖ = ων
𝑅𝑔𝑠𝑖𝑛α

(22)𝑡 = 𝑣𝑡

𝑅2

(23)𝑟 = 𝑟
𝑅

Therefore, Eq. 20 and the Equations introduced from 21-23 can be combined in order to form an

expression that will thereby function as the asymptotic solution at long times to the rolling

cylinder problem posed in the report:

(24)ϖ = 2
3

𝑔𝑠𝑖𝑛α
𝑅 𝑡 + 𝑔𝑠𝑖𝑛α

𝑅
𝑟2

12ν

𝑑ω
𝑑𝑡 = 2

3
𝑔𝑠𝑖𝑛α

𝑅

(25)𝑎 = 2
3 𝑔𝑠𝑖𝑛α

Eq. 25 demonstrates that a cylinder that is filled entirely with a highly viscous fluid nearing

infinity and is subject to motion along an inclined plane will have the same linear acceleration as

a cylinder that was entirely solid. In that same regard, the inviscid case of acceleration can be

analytically determined to be:

(26)𝑎 = 𝑔𝑠𝑖𝑛α

Furthermore, it can be realized that the solution for the asymptotic long time viscous acceleration

is times the inviscid case of acceleration. Therefore, at long times, the time to roll down the3
2

ramp increases by a factor of . As a result, since the time for inviscid times is 1.29 seconds3
2
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as determined through , where L is the length of the ramp and the angle is 10.03 ±𝑡 = 2𝐿
𝑔𝑠𝑖𝑛α α

2° as experimentally determined within the report through the use of the physical dimensions of

the ramp, then at long times it is seconds.3
2 * 1. 29 = 1. 57

3 Variables

Independent variables

The independent variable is simply the liquid within the can.

Dependent variables

In this experiment, the dependent variables explored are the linear acceleration of the can and the

time it takes for the can to reach the bottom of the ramp.

Controlled variables

To ensure that the motion of the can is solely affected by the type of fluid inside the can, several

variables were kept constant throughout the experiment. The angle of the ramp (α) was

maintained at a fixed value to eliminate any influence from variations in the ramp's incline.

Similarly, the mass of the can (m) was kept constant to prevent changes in mass from affecting

the can's acceleration. Additionally, the dimensions of the can, including its radius (R) and length

(L), were held constant to maintain consistent frictional interactions between the can and the

ramp. Furthermore, the temperature of the fluid was kept constant to ensure that its viscosity

remained unchanged, preventing temperature fluctuations from influencing the fluid's behavior.

4 Methodology

Apparatus

a. Wooden ramp (1.454 ± 0.001 m)

​ c. 30cm Ruler (for precise measurements)
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​ d. Stopwatch (for timing the can's descent)

​ e. Various liquids: sunflower cooking oil, automated transmission fluid, water, and

molasses honey (for experimental trials with different liquids)

​ f. Cylindrical hollow can (for the experiment's main object of study)

​ g. 1kg hexagonal weight (to maintain cylinder’s initial point of rest) (2)

​ h. Duct tape (1)

​ i. Digital mass scale (1)

​ Photograph taken by candidate.

Procedure

● Set up the wooden ramp on a stable surface, ensuring it is secure and stationary.

● Use a leveling tool to ensure the ramp is properly aligned and has a consistent

angle of inclination (e.g., 10.03 ± 2° ). Adjust if needed.
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● Place the cylindrical hollow can at the top of the ramp, aligning it with the center

of the ramp and perpendicular to the surface.

● Begin with the can filled with one type of liquid (e.g., sunflower cooking oil).

● Hold the can at the top of the ramp, ensuring it is still and not rotating.

● Release the can gently from rest, allowing it to roll down the ramp without any

additional force.

● Start the stopwatch as soon as the can is released and stop it when the can reaches

a designated point on the ramp. Use a visual marker or a distinct feature on the

ramp to mark the point.

● Repeat this process six times for each liquid type.

5 Experimental Findings

Raw data tables

Table 1: Dimensions of Hollow Cylindrical Can

Dimensions of can Trial 1 Trial 2 Trial 3

Radius ± 0.0005 (m) 3.50 3.45 3.48

Height ± 0.0005 (m) 11.30 11.28 11.35

Table 2: Mass of Each Liquid With and Without the Duct Tape Covering (where mass of can is

negligible)

liquid Type Trials Mass of liquid +
tape (g)

Mass of liquid (g)

Automated
transmission liquid
dextrin
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Trial 1 334 333

Trial 2 334 333

Trial 3 334 333

Sunflower oil

Trial 1 414 413

Trial 2 414 413

Trial 3 414 413

Water

Trial 1 445 444

Trial 2 445 444

Trial 3 445 444

molasses honey

Trial 1 550 549

Trial 2 550 549

Trial 3 550 549

Table 3: Time taken to reach bottom of ramp in seconds for each liquid fully-filled into a hollow

cylindrical shell.

Liquid Type Trials Time taken to reach bottom
of ramp ± 0.01 (s)

Automated transmission
liquid dextrin

Trial 1 1.40

Trial 2 1.41

Trial 3 1.38

Sunflower oil
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Trial 1 1.45

Trial 2 1.42

Trial 3 1.43

Water

Trial 1 1.50

Trial 2 1.47

Trial 3 1.50

Molasses honey

Trial 1 1.30

Trial 2 1.32

Trial 3 1.34

Table 4: Measurements of the diagonal length (hypotenuse) and height of the wooden ramp in

meters

Trials Hypotenuse (diagonal length
of ramp) ± 0.05 (cm)

Height ± 0.05 (cm)

Trial 1 145.4 25.4

Trial 2 144.8 25.8

Trial 3 144.5 25.0

Processed data tables

Table 5:

Average height ± 0.0015 (m) Average radius ± 0.0015 (m) Average volume of the can ±
0.0060 ( )𝑚3

11.31 3.4712 427.83
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Table 6: Processed values for density, subsequent viscosity, , in poise, and kinematic viscosity,µ

, in .ν 𝑐𝑚2

𝑠

Density ( ± 0.6ρ)
𝑔

𝑐𝑚3

Approximated
viscosity ( in poiseµ)

Kinematic viscosity (
)ν

Water 1.0 0.01 0.01

Sunflower oil 0.92 0.49 0.53

Molasses honey 1.45 120.00 82.75

Transmission fluid 0.87 1.20 1.37

Table 7: Processed values for average time taken to reach bottom of ramp for different liquids

within the can.

Average time taken to reach bottom of ramp
(s) ± 0.03 seconds

Water 1.49

Sunflower oil 1.43

Molasses honey 1.32

Transmission fluid 1.39

Graphical representation of the data

The primary graphical representation of data in this report will be in the context of the formula

derived in the theoretical background. Particularly, Equation 17, which presents an expression

for short-time behavior:
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𝑡 = 𝑡
0
(1 + 16

15

ν𝑡
0

π𝑅2 )

Therefore, it is sufficient to plot against in order to describe the behavior of the𝑡
𝑡

0

ν𝑡
0

π𝑅2

various liquids filled to fit the volume of the cylindrical can.
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