Pauli-Villars regnla.ri.zatiaﬁ‘ is still used for many calculations, bat another |0 This exy

method has become more popular because it works better for non-Abelian gauge n—k-—;
fields: the dimensional regularization of ’t Hooft and Veltman [118], The idea of d=4,w
dimensional regularization is to perform an analytic continuation in the number 4 : the loog
of space-time dimensions. This is not as erazy as it sounds at first! We are not . a“1/(4
proposing to develop a theory of integration in d dimensions for arbitrary complex caleulat
d, only to extend certain special kinds of d-dimensional integrals to complex d. Nor The
are we claiming that there is only one way to do so; all we need is one way that can be
works. duction
To apply this method to a divergent integral of the form (7.1), one prepares the perform
ground by retracing the steps we have used to evaluate convergent integrals: i dimensic
i. Wick-rotate the momenta. procedu
ii. Convert the denominator from a product of quadratics to a power of a single Now
guadratic by Feynman's formula, obtaining an integral of the form (7.7), and : in (7.13
then interchange the momentum space integration with the integration over d=4w
the Feynman parameters. & which w

iii. Perform a linear change of variable to get rid of the linear terms in the denom- (integer-
inator and obtain an integral of the form (7.8). - is equip

iv. Reduce the resulting integral to integrals of radial functions on R by using analysis
the formula (7.10). function

In the present setting, each of these steps consists of formal manipulations. They _fff identitie
must be regarded simply as parts of a symbolic caloulation thai will eventually d-dimen
interpret the original divergent integral as a limit of well-defined finite quantities. Clitford
It is with the final reduction to integrals of radial functions that we cen start that 7.9

doing some honest analysis. Specifically, for a radial function on BY, say f{|q]), inte- Incl
gration in polar coordinates reduces its d-dimensional integral to a one-dimensional algorith:
one: there, by
series).
ultimate
o0 .
(1.13) [rtabata=au [~ septar, one il
0 However
more ca
The
where {2y = 2r%/2/T(d/2) is the area of the unit sphere in R% (See, e.g,, Folland depende
[48].) Now, the expression on the right does define an analytic funetion of d in the formulas
domain of those d for which the integral converges. For our purposes f(v)} will be of means:
the form f(r) = r*/(r* 4 ¢*)", so the integral converges provided 0 < d < 2n — k i. The
and can be evaluated in terms of the gamma function: the substitution ¢ = {r/c)* tain
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This expression continues analytically to larger values of d except for poles where
R R %d is a nonnegative integer. In our situation, one of these poles will oceur at

118]. The idea of B d == 4, which corresponds to the original divergent integral (when we integrate over
the loop momenia one at a time). The “oc” of the original izdepral then becomes
a “1/(4 —d)” term in a well-defined analytic expression that can be used in further
calculations.

_The shortcut that we discussed for evaluating convergent integrals after (7.8)

1 in the number d
first! We are not
arbitrary complex
toonmnlex d NOE




