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Abstract 
 

Since 1993 researchers proposed many methods for forecasting enrollments, 
Temperature prediction, stock price etc in time variant and time invariant first 
order, higher order, two factor and dual variables. In this paper, we propose a 
model to temperature prediction from correlated categorical data sequence 
obtained from similar source. We study a multivariate Markov chain model for 
categorical data sequences to fuzzy time series. The proposed method gets 
higher average forecasting accuracy rate than some of the existing methods on 
temperature prediction. 
 
Keywords: Multivariate Markov Chain; transition frequencies; categorical 
data sequence; fuzzy time series. 

 
 
Introduction 
An ordered sequence of observed values is known as time series. If the observed 
values represent measured values, it is often not possible to assign precise numerical 
values to the observed data, they then posses data uncertainty. This paper concerns 
with the time series comprised of imprecise i.e., uncertain observed values. In the case 
of time series the uncertainty of the individual observed values as well as the 
interpretation of a sequence of uncertain observed values are of interest. The uncertain 
observed value is thus modeled as a fuzzy variable. Fuzzy sets represent concepts 
such as low etc are called fuzzy variables. Modeling of the individual observed values 
as fuzzy variables result in fuzzy time series. 
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 In this paper, we discuss a new fuzzy time series model based on multivariate 
Markov chain model on categorical data sequences. Categorical data sequences have 
many applications in applied sciences and engineering problems, data mining, credit 
risk problems in finance etc. The data used for all the results that are obtained come 
from a single source. On the other hand, in multivariate Markov chain model 
categorical data sequences are taken into consideration. In other words, data 
sequences that have a correlation with each other are used. As a result of this, 
predictions which are very close to the reality can be made. By making use of the 
transition probability matrix a categorical data sequence of m states can be modeled 
by an m-state Markov chain model. The above idea can be extended to model 
multiple categorical data sequences. One would expect categorical data sequences 
generated by similar sources or same source to be correlated to each other. Therefore 
by exploring these relationships, one can develop better models for the categorical 
data sequences and hence better prediction rules. 
 Box and Jenkins time series models (ARIMA models) have been applied for a 
long time to forecasting. However, ARIMA models have several limitations such as 
stationary, normality etc. In fuzzy time series there are no preconditions like 
stationary and normality. The traditional time series forecasting methods can not be 
used for forecasting problems in which the historical data are linguistic values. Song 
and Chissom (1993, 1994) proposed time variant and time invariant fuzzy time series 
models and fuzzy forecasting to model and forecast processes whose observation are 
linguistic values. Then a number related research work have been reported. These 
works include enrollments [2], [3], [4], [26], [33], [34], [35], [36], length of intervals 
[17], [21], temperature prediction[5], [24], [25], [30], weighted method [6], [42], 
stock price [7], [15], [16], [20], [23], [29], [37], [39], [40], hidden Markov model 
[27], genetic algorithm[8], [25], neural – fuzzy system [19], [28], bulk shipping [9], 
[10], [11], [12], [13], [14], seasonal[1], [32], [38], heuristic models [18], [22], [31]. 
 Wai Ki Ching., Eric S., Fung and Michael K. Ng (2002) studied multivariate 
Markov chain models for analyzing categorical data sequences and proposed an 
efficient estimation method for the model parameters. They also developed higher 
order Markov chain models for analyzing categorical data sequences. 
 
 
Fuzzy time series 
In the following, we briefly review some basic concepts of fuzzy time series from 
Song and Chissom (1993, 1994) and its forecasting frame work. 
 
Definition 1: A fuzzy set A is defined as an uncertain subset of the fundamental set X. 
 A = ሼሺݔ,  ሽܺ߳ݔ|ሻሻݔ஺ሺߤ
 
 The uncertainty is assessed by the membership function ߤ஺ሺݔሻ.  
 
Definition 2: Let Y(t) {t = 0, 1, 2, 3, …}, a subset of Թ, be the universe of discourse 
on which fuzzy sets fi(t) ( i = 1, 2, 3…) are defined and let F(t) be the collection of 
fi(t). Then F (t) is defined as fuzzy time series on Y(t). 
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 From this definition we can see that, (1) F(t) is the function of time  
 (2) F(t) can be regarded as a linguistic variable, which is a variable whose values 
are linguistic values represented by fuzzy sets. 
 (3) fi(t) ( i = 1, 2, 3…) are possible linguistic values of F(t), where fi (t) ( i = 1, 2, 
3, ….) are represented by fuzzy sets. 
 Song and Chissom employed a fuzzy relational equation to develop their 
forecasting model under the assumption that the observations at time t are dependent 
only upon the accumulated results of the observation at previous times, which is 
defined as follows. 
 
Definition 3: Suppose F(t) is caused only by F(t-1) and is denoted by F(t-1) → F(t), 
then there is a fuzzy relationship between F(t) and F(t-1) and can be expressed as the 
fuzzy relational equation F(t) = F(t-1)  R(t, t-1). Here ‘ ’ is max- min composition 
operator. The relation R is called first – order model of F(t).  
 Further, if fuzzy relation R(t, t-1) of F(t) is independent of time t, that is to say, for 
different times t1 and t2, R(t1, t1-1) = R(t2, t2-1), then F(t) is called a time invariant 
fuzzy time series otherwise F(t) is time variant. 
 
Definition 4: Suppose F(t-1) = Ai and F(t) = Aj a fuzzy logical relationship can be 
defined as Ai → Aj where Ai and Aj are called the left hand side and the right hand 
side of the fuzzy logical relationship respectively. 
 
Definition 5: If F(t) is caused by more fuzzy sets F(t-n), F(t-n+1), …, F(t-1) the fuzzy 
relationship is represented by Ai1, Ai2, Ai3, … Ain → Aj, where F(t-n) = Ai1, F(t-
n+1) = Ai2, …, F(t-1) = Ain. This relationship is called nth order fuzzy time series 
model. 
 
 
The Multivariate Markov Chain model 
We briefly review some basic concepts of a multivariate Markov chain model to 
represent the behavior of multiple categorical data sequences generated by similar 
sources or the same source proposed by Ching et al., (2002). Consider Markov chains 
having finite number of states ग = {1, 2, ..., ݉}. In general, a categorical data 
sequence ़1, ़2, ..., ़T can be logically represented by a sequence of vectors x1, x2, ..., 
xT where T is the length of the sequence, and xi = ek (ek is the unit vector with the kth 
entry being one) if it is in state k. A first-order discrete-time Markov chain having m 
discrete states satisfies the following relationship: 
 Pr (xt+1 = ࢚ࢄࢋశ૚פ x0 = ࢞ࢋ૙, x1 = ࢞ࢋ૚, ..., xt = ࢚࢞ࢋ) = Pr (xt+1 = ࢚࢞ࢋశ૚פ xt = ࢚࢞ࢋ) 
 
where ़i א ग. The conditional probabilities Pr (xn+1 = ࢔࢞ࢋశ૚פ xn = ࢔࢞ࢋ) are called the 
single-step transition probabilities of the Markov chain. They give the conditional 
probability of making a transition from state i to state j when the time parameter 
increases from n to n+1. These probabilities are independent of n and are written as 
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∀.(࢐ࢋ = xn פ࢏ࢋ = xn+1) ௜௝ = Pr݌  i, j א ग. 
 
 The matrix P, formed by placing ݌௜௝ in row i and column j for all i and j, is called 
the transition probability matrix. We note that the elements of the matrix P satisfy the 

following two properties: 0 ≤ ݌௜௝ ≤ 1 ∀ i, j א ग and 
1

1,
m

ij
j

p
=

=∑
 
∀  j א ग. We 

assume that ݌௜௝ are not all zero for each j.  
 Here we assume that there are s categorical sequences and each has m possible 
states in ग. Let xn

(k) be the state vector of the ݇௧௛ sequence at time n. If the ݇௧௛ 
sequence is in state j at time n then  

 xn
(k) (0,...,0, 1 ,0,...,0) .T

j
jthentry

e= =  

 
 In the multivariate Markov chain model, we assume the following relationship:  

 xn+1
(k) = ∑ ௝௞ߣ

௦
௞ୀଵ ܲሺ௝௞ሻxn

(k), for j = 1, 2, …, s.,  
 
where ߣ௝௞ ≥ 0, 1 ≤ j, k ≤ s and ∑ ௝௞ߣ

௦
௞ୀଵ  =1, for j = 1, 2, …, s., 

 
 The state probability distribution of the ݇௧௛ sequence at the ሺ݊ ൅ 1ሻ௧௛ step 
depends on the weighted average of ܲሺ௝௞ሻxn

(k). Here ܲሺ௝௞ሻ is a transition probability 
matrix from the states in the ݇௧௛ sequence to the states in the ݆௧௛ sequence, and xn

(k) is 
the state probability distribution of the ݇௧௛ sequences at the ݊௧௛ step. In matrix form 
we write 

(1) (11) (12) (1 ) (1)
1 11 12 1

(2) (21) (22) (2 ) (2)
1 21 22 2

1

( ) ( 1) ( 2) ( ) ( )
1 1 2

s
n s n

s
n s n

n

s s s ss s
n s s ss n

P P P

P P P

P P P

λ λ λ
λ λ λ

λ λ λ

+

+
+

+

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟≡ =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

x x
x x

x

x x

≡ Qܠ௡ or xn+1 = Qxn 

 
 
Proposed Model  
In this section we introduce a model to forecast the Temperature of Taipei. The 
historical data of daily average Temperature of Taipei from June 1996 to September 
1996 are considered. The step-wise procedure of the proposed model of fuzzy time 
series is detailed as follows. 
 
Step 1:  
Define the universe of discourse U = [low, up], which can cover all observations of 
Temperature in the months of June 1996 to September 1996 of historical data set. 
Initially partition the universe of discourse into seven linguistic intervals ݑ௜, i = 1, 2, 
…, 7. of equal length.  
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Step2: 
Temperatures are categorized into seven possible states. Define fuzzy sets A1 (very 
very low), A2 (very low), A3 (low), A4 (normal), A5 (high), A6 (very high), A7 (very 
very high). Construct the fuzzy sets Ai in accordance with the intervals in step 1. 
Fuzzify the historical data. For n fuzzy sets, A1, A2, .......An can be defined on U as 
follows: 

 Ai = ∑
=

n

j j

ij

v1

μ

 
where μij is the membership degree of Ai belonging to vj and is  

 defined by 
⎪
⎩

⎪
⎨

⎧
=

0
5.0

1

ijμ  
if

if

if
 
otherwise

ij

ij

1−=
=

or 1+i  

 
 Then, for a given historical datum Yt, its membership degree belonging to interval 
vi is determined by the following heuristic rules. 
Rule 1: if Yt is located at v1, the membership degrees are 1 for v1, 0.5 for v2 and 0 

otherwise. 
Rule 2:  if Yt belongs to vi, 1 < i < n, then the degrees are 1, 0.5 and 0.5 for vi, vi–1 

and vi +1, respectively and 0 otherwise. 
Rule 3: if Yt is located at vn, the membership degrees are 1 for vn, 0.5 for vn-1 and 0 

otherwise. Then, Yt is fuzzified as Aj, where the membership degree in 
interval j is maximal. 

 
Step 3:  
Represent the subscripts of the fuzzy sets obtained from the four months of 
temperature data as the members of the categorical data sequences S1, S2, S3, S4.  
 
Step 4: 
Given the data sequence we count the transition frequency f୧ౠ୧ౡ 

ሺ୨୩ሻ from the state ݅௞ in 

the sequence {ܠ୬
ሺ୩ሻሽ to the state ௝݅ in the sequence {ܠ୬

ሺ୨ሻሽ and therefore we construct 
the transition frequency matrix for the sequences as follows: 

 = ሺ௝௞ሻܨ  

( ) ( )
11 1
( ) ( )

12 2

( ) ( )
1

jk jk
m

jk jk
m

jk jk
m mm

f f

f f

f f

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

. 

 
Step 5:  
After the normalization, the estimates of the transition probability matrices from 
  :ሺ௝௞ሻcan also be obtained as follows [41]ܨ
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 ෠ܲሺ௝௞ሻ =

( ) ( )
11 1
( ) ( )
12 2

( ) ( )
1

ˆ ˆ
ˆ ˆ

ˆ ˆ

jk jk
m

jk jk
m

jk jk
m mm

p p

p p

p p

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠  

where ̂݌௜ೕ௜ೖ

ሺ௝௞ሻ =

( )
( )

( ) 1

1

0

0 .

j k

j k

k

j k

k

jk m
i i jk

i im
jk i

i i
i

f
if f

f

otherwise

=

=

⎧
≠⎪

⎪
⎨
⎪
⎪⎩

∑
∑

 

 
Step 6: 
We need to estimate the parameters λ௝௞. The stationary vector ܠො can be estimated from 
the sequences by computing the proportion of the occurrence of each state in each of 
the sequences, and let us denote it by ܠො = ሾ ܠොଵ, ,ොሺଶሻܠ … ,  ොሺ௦ሻሿ். One would expectܠ

 

(11) (12) (1 )
11 12 1

(21) (22) (2 )
21 22 2

( 1) ( 2) ( )
1 2

ˆ ˆ

s
s

s
s

s s ss
s s ss

P P P

P P P

P P P

λ λ λ
λ λ λ

λ λ λ

⎛ ⎞
⎜ ⎟
⎜ ⎟ ≈⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

x x

 
 
 From the above equation, it suggests one possible way to estimate the parameters 
λ = {λ௝௞} as follows. One may consider solving the following optimization problem 
[41]: 

 

s
( j k ) ( k ) ( k )

j kλ i k = 1 i

s

j k j k
k = 1

ˆ ˆ ˆm i n m a x λ p x - x

s u b j e c t  t o λ = 1 a n d λ 0 , k .

⎧ ⎡ ⎤
⎪ ⎢ ⎥⎪ ⎣ ⎦
⎨
⎪ ≥ ∀⎪⎩

∑

∑
 
 

 
Step 7: 
Formulate s linear programming problems from the above optimization problem as 
follows: 

 For each j: 
1 1

2 2( ) ( )

1

min

ˆ ˆ,
subject to ,

0,

1, 0, .

j

j j j j

j j j jj j

j js j js

j

s

jk jk
k

w

w w

w w
X B X B

w w

w

k

λ

λ λ
λ λ

λ λ

λ λ
=

⎧
⎪
⎪ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ≥ − ≥ − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪

⎨ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎪ ≥⎪
⎪

= ≥ ∀⎪
⎩

∑
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where B = [ P෡ሺ୨ଵሻ ܠොሺଵሻ פ P෡ሺ୨ଶሻ ܠොሺଶሻ פ...פ  P෡ሺ୨ୱሻ ܠොሺୱሻ ]. 
 
Step 8: Construct the models using the values obtained in steps 6 and 7 and forecast 
the vector to the historical data. Compare with the actual vector by taking minimum 
among the vector elements. Calculate the forecasted value as follows: 

 Forecasted value = ∑ ࢏࢓ ࢏࢜
ૠ
స૚࢏
∑ ࢏࢜

ૠ
స૚࢏

 where ݒ௜  are entries of the resulting vector and  

 ݉௜ are midpoints of the corresponding ݑ௜. 
 
Step 9: Choose ߙ in (0, 1). Make an error analysis for every month as follows: 
 New forecasted value = ஺௖௧௨௔௟ ௩௔௟௨௘ା௙௢௥௘௖௔௦௧௘ௗ ௩௔௟௨௘ – ఈ

ଶ
 

 
 Compute Root Mean Square Error (RMSE) for different ߙ values on new 
forecasted values. Fix ߙ corresponding to minimum RMSE value through the graph. 
The forecasted values with respect to this ߙ are the expected forecasted values. 
 
Step 10: Compare this model with some of the existing models.  
In the next section, we give an example to demonstrate the construction of a 
multivariate Markov model using fuzzy time series from four categorical data 
sequences. 
 
 
Performance evaluation of the model: 
The four categorical data sequences obtained from the temperature data as follows:  
S1 = {3, 4, 5, 7, 6, 6, 6, 6, 5, 6, 6, 5, 5, 4, 6, 5, 5, 6, 6, 7, 7, 5, 4, 4, 4, 4, 5, 4, 5, 6} 
S2 = {6, 5, 5, 6, 6, 6, 6, 6, 5, 5, 5, 6, 4, 5, 4, 5, 5, 6, 7, 7, 7, 7, 7, 7, 5, 4, 5, 4, 6, 4} 
S3 = {4, 5, 5, 6, 5, 5, 5, 5, 4, 5, 5, 5, 6, 4, 3, 4, 4, 5, 5, 6, 6, 6, 4, 5, 5, 5, 5, 4, 3, 3} and 
S4 = {4, 3, 3, 4, 3, 5, 5, 5, 6, 6, 6, 7, 6, 6, 6, 5, 5, 5, 5, 5, 3, 3, 2, 4, 3, 3, 2, 1, 1, 1} 
 
By counting the intra transition frequencies  
S1:3ื4ื5ื7ื6ื6ื6ื6ื5ื6ื6ื5ื5ื4ื6ื5ื5ื6 
 ื6ื7ื7ื5ื4ื4ื4ื4ื5ื4ื5ื6 
S2:6ื5ื5ื6ื6ื6ื6ื6ื5ื5ื5ื6ื4ื5ื4ื5ื5ื6 
 ื7ื7ื7ื7ื7ื7ื5ื4ื5ื4ื6ื4 
S3:4ื5ื5ื6ื5ื5ื5ื5ื4ื5ื5ื5ื6ื4ื3ื4ื4ื5 
 ื5ื6ื6ื6ื4ื5ื5ื5ื5ื4ื3ื3 
S4:4ื3ื3ื4ื3ื5ื5ื5ื6ื6ื6ื7ื6ื6ื6ื5ื5ื5 
 ื5ื5ื3ื3ื2ื4ื3ื3ื2ื1ื1ื1 
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(11)

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 3 3 0 0
0 0 0 3 2 3 1
0 0 0 1 3 5 1
0 0 0 0 1 1 1

F

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠   … 

(44)

2 1 0 0 0 0 0
0 0 2 0 0 0 0
0 0 3 3 1 0 0
0 1 1 0 0 0 0
0 0 1 0 6 1 0
0 0 0 0 1 4 1
0 0 0 0 0 1 0

F

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠    

 
 After normalization we have the transition probability matrices 

 

(11)

1 1 0 0 0 0 0
7 7
1 1 0 0 0 0 0
7 7
1 1 0 0 0 0 0
7 7
1 1 3 11 0 0
7 7 7 3
1 1 3 2 1 10
7 7 7 9 3 3
1 1 1 1 5 10
7 7 7 3 9 3
1 1 1 1 10 0
7 7 9 9 3

P

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

  … (44)

11 0 0 0 0 0
2

20 0 0 0 0 0
7
3 10 0 1 0 0
7 8

1 10 0 0 0 0
2 7

1 3 10 0 0 0
7 4 6

1 20 0 0 0 1
8 3

10 0 0 0 0 0
6

P

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
 

 
 ڭ
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 Moreover, by counting the inter-transition frequencies we have 

 

(12)

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 2 1 3
0 0 0 3 3 2 1
0 0 0 0 4 6 0
0 0 0 0 1 0 2

F

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠   …

(43)

0 0 1 1 1 0 0
0 0 0 0 1 1 0
0 0 0 1 3 3 0
0 0 0 1 1 0 0
0 0 1 2 5 0 0
0 0 0 2 3 1 0
0 0 0 0 1 0 0

F

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠  

 
 After normalization we have the transition probability matrices:

  

  
 
 By solving the corresponding minimization problems, through linear 
programming  

߱ସ  ൒  
1

10 െ  
1

10 ସଵߣ െ  
13

120 ସଶߣ െ
13
60 ସଷߣ െ

2
15  ସସߣ

 ڭ

߱ସ  ൒  
1

30 െ  
1

27 ସଵߣ െ 
1

30 ସଶߣ െ
1

30 ସଷߣ െ
1

30  ସସߣ
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߱ସ  ൒  െ
1

10 ൅  
1

10 ସଵߣ ൅ 
13

120 ସଶߣ ൅
13
60 ସଷߣ ൅

2
15  ସସߣ

 ڭ

߱ସ  ൒  െ
1

30 ൅  
1

27 ସଵߣ ൅  
1

30 ସଶߣ ൅
1

30 ସଷߣ ൅
1

30  ସସߣ

(12)

1 1 1 0 0 0 0
7 7 7
1 1 1 0 0 0 0
7 7 7
1 1 1 0 0 0 0
7 7 7
1 1 1 1 1 1 1 ....
7 7 7 4 5 9 2
1 1 1 3 3 2 1
7 7 7 4 10 9 6
1 1 1 2 20 0
7 7 7 5 3
1 1 1 1 10 0
7 7 7 10 3

P

⎛ ⎞
⎜ ⎟
⎜ ⎟
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

(43)

1 1 1 1 1 10
7 7 2 7 15 7
1 1 1 1 10 0
7 7 15 5 7
1 1 1 1 3 10
7 7 7 5 5 7
1 1 1 1 10 0
7 7 7 15 7
1 1 1 2 1 10
7 7 2 7 3 7
1 1 2 1 1 10
7 7 7 5 5 7
1 1 1 10 0 0
7 7 15 7

P

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
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we obtain the optimal solution by step 7 

0.0000 0.2683 0.4541 0.2777
0.0000 0.0000 0.0000 1.0000

[ ]
0.0000 0.5112 0.4848 0.0000
0.4529 0.1824 0.1861 0.1786

jkλ

⎛ ⎞
⎜ ⎟
⎜ ⎟Λ = =
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
and by step 8, the multivariate Markov model for four categorical data sequences is as 
follows:  

(1) (11) (1) (12) (2) (13) (3) (14) (4)
n+1

(2) (21) (1) (22) (2) (23) (3) (24)
n+1

(
1

(4)

3)
n+

ˆ ˆ ˆ ˆ =   0.0000 P  + 0.2683 P 0.4541P 0.2777P     
ˆ ˆ ˆ ˆ =     0.0000  P  + 0.0000  P 0.0000  P 1.0000 P

 =   0.0

n n

n n n

n n

n

+ +

+ +

x x x x x

x x x x x

x (31) (1) (32) (2) (33) (3) (14) (4)

(4) (41) (1) (42) (2) (43) (3) (44) (4)
n+1

ˆ ˆ ˆ ˆ000  P  + 0.5112 P 0.4888P 0.0000 P     
ˆ ˆ ˆ ˆ =  0.4529 P  + 0.1824 P 0.1861P 0.1786P  

n n n n

n n n n

⎧
⎪
⎪
⎨

+ +⎪
⎪ + +⎩

x x x x

x x x x x

 

 
 By step 8 as an example when n = 1, the forecasting vector of the second position 
in the fourth sequence is ( )(4)

2 0.05 0 0.70 0.03 0.13 0.09 0 T=x and the 
actual fuzzy set of the second position in the fourth sequence is A3 (i.e in the second 
day of the September temperature). The corresponding vector is
( )0 0.5 1 0.5 0 0 0 T . Compare the actual and forecasting vectors by taking 

minimum, we get ( )0 0 0.70 0.03 0 0 0 T .  
 The forecasting value corresponding to second position in the fourth sequence by 
step 9 
 is ሺ଴ۭ୫ଵሻାሺ଴ۭ୫ଶ ሻାሺ଴.଻଴ۭ୫ଷሻାሺ଴.଴ଷۭ୫ସሻାሺ଴ۭ୫ହሻାሺ଴ۭ୫଺ሻାሺ଴ۭ୫଻ሻ

଴.଻଴ା଴.଴ଷ  = 26.3. 
 
 By step 9, we find ߙ ൌ 0.06 and the new forecasted value = 26.52. 

 

 
 

Figure 1: RMSE results for different ߙ values to September 1996 
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Table 1: Actual and forecasted values of temperature 
 

Day June July August September 
 Actual Forecast Actual Forecast Actual Forecast Actual Forecast 
1 26.1 - 29.9 - 27.1 - 27.5 - 
2 27.6 27.74 28.4 28.74 28.9 28.75 26.8 26.52 
3 29.0 28.89 29.2 29.04 28.9 28.75 26.4 26.32 
4 30.5 30.34 29.4 29.64 29.3 29.10 27.5 27.52 
5 30.0 29.84 29.9 29.49 28.8 28.75 26.6 26.37 
6 29.5 29.49 29.6 29.74 28.7 28.75 28.2 28.52 
7 29.7 29.64 30.1 30.04 29.0 28.85 29.2 29.02 
8 29.4 29.49 29.3 29.64 28.2 28.45 29.0 28.92 
9 28.8 28.69 28.1 28.74 27.0 27.60 30.3 29.72 
10 29.4 29.39 28.9 28.79 28.3 28.40 29.9 29.67 
11 29.3 29.39 28.4 28.54 28.9 28.75 29.9 29.62 
12 28.5 28.69 29.6 29.29 28.1 28.35 30.5 30.32 
13 28.7 28.84 27.8 27.64 29.9 29.40 30.2 29.77 
14 27.5 27.74 29.1 28.89 27.6 27.60 30.3 29.87 
15 29.5 29.44 27.7 28.04 26.8 26.80 29.5 29.62 
16 28.8 28.89 28.1 28.39 27.6 27.40 28.3 28.67 
17 29.0 28.99 28.7 29.04 27.9 27.90 28.6 28.77 
18 30.3 29.94 29.9 29.94 29.0 28.75 28.1 28.52 
19 30.2 29.89 30.8 30.59 29.2 28.95 28.4 28.62 
20 30.9 30.64 31.6 30.99 29.8 29.50 28.3 28.57 
21 30.8 30.64 31.4 30.89 29.6 29.50 26.4 26.27 
22 28.7 28.49 31.3 30.84 29.3 29.35 25.7 26.07 
23 27.8 27.84 31.3 30.84 28.0 28.05 25.0 25.22 
24 27.4 27.59 31.3 31.14 28.3 28.55 27.0 26.97 
25 27.7 27.74 28.9 28.99 28.6 28.75 25.8 26.02 
26 27.1 27.64 28.0 28.14 28.7 28.65 26.4 26.32 
27 28.4 28.44 28.6 28.74 29.0 28.65 25.6 25.52 
28 27.8 27.84 28.0 27.74 27.7 27.95 24.2 24.17 
29 29.0 28.89 29.3 29.59 26.2 26.55 23.3 23.72 
30 30.2 29.74 27.9 27.69 26.0 26.45 23.5 23.72 
31 - - 26.9 - 27.7 - - - 

RMSE  1.1489  2.6575  1.7475  2.1171 
 

Table 2: (AFER) (In percentage) 
 

Month Lee et.al(2006) Lee et.al(2007) Proposed Method 
June 1.44 1.24 0.54 
July 1.59 1.23 0.87 
Aug 1.26 1.09 0.69 
Sept 1.89 1.28 0.83 
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Conclusion 
In this chapter, we have proposed a new forecasting model based on multivariate 
Markov chain on categorical sequences for forecasting the daily average temperature 
of the Taipei, Taiwan. Through the fuzzification of the temperature data we obtained 
four categorical data sequences and on which multivariate Markov chain on 
categorical sequences is applied. From the experimental results the proposed method 
provides the smallest AFER (see Table 2) and improves on other methods using fuzzy 
times series forecasting methods. We may obtain further accuracy by applying higher 
order multivariate Markov chain model on categorical data sequences. 
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